Enhanced T cell proliferation and increased responder frequency following delivery of antigen to the antigen-presenting cell; B cell dependency and use in detection of autoreactive T cells

1998 ◽  
Vol 215 (1-2) ◽  
pp. 59-70 ◽  
Author(s):  
Elizabeth J Stevens ◽  
Mark Peakman
1984 ◽  
Vol 159 (3) ◽  
pp. 881-905 ◽  
Author(s):  
J D Ashwell ◽  
A L DeFranco ◽  
W E Paul ◽  
R H Schwartz

In this report we have examined the ability of small resting B cells to act as antigen-presenting cells (APC) to antigen-specific MHC-restricted T cells as assessed by either T cell proliferation or T cell-dependent B cell stimulation. We found that 10 of 14 in vitro antigen-specific MHC-restricted T cell clones and lines and three of four T cell hybridomas could be induced to either proliferate or secrete IL-2 in the presence of lightly irradiated (1,000 rads) purified B cells and the appropriate foreign antigen. All T cell lines and hybridomas were stimulated to proliferate or make IL-2 by macrophage- and dendritic cell-enriched populations and all T cells tested except one hybridoma caused B cell activation when stimulated with B cells as APC. Furthermore, lightly irradiated, highly purified syngeneic B cells were as potent a source of APC for inducing B cell activation as were low density dendritic and macrophage-enriched cells. Lymph node T cells freshly taken from antigen-primed animals were also found to proliferate when cultured with purified B cells and the appropriate antigen. Thus, small resting B cells can function as APC to a variety of T cells. This APC function was easily measured when the cells were irradiated with 1,000 rads, but was greatly diminished or absent when they were irradiated with 3,300 rads. Thus, the failure of some other laboratories to observe this phenomenon may be the result of the relative radiosensitivity of the antigen-presenting function of the B cells. In addition, this radiosensitivity allowed us to easily distinguish B cell antigen presentation from presentation by the dendritic cell and macrophage, as the latter was resistant to 3,300 rads. Finally, one T cell clone that failed to proliferate when B cells were used as APC was able to recruit allogeneic B cells to proliferate in the presence of syngeneic B cells and the appropriate antigen. This result suggests that there are at least two distinct pathways of activation in T cells, one that leads to T cell proliferation and one that leads to the secretion of B cell recruitment factor(s).


1995 ◽  
Vol 181 (3) ◽  
pp. 1081-1089 ◽  
Author(s):  
H Secrist ◽  
R H DeKruyff ◽  
D T Umetsu

We have previously shown that CD4+ T cells from allergic individuals are predisposed to produce interleukin (IL)-4 in response to allergens, and that allergen immunotherapy greatly reduced IL-4 production in an allergen-specific fashion. The mechanism that results in the reduction of IL-4 synthesis in treated individuals is unknown, but because clinical improvement during immunotherapy is associated with the administration of the highest doses of allergen, we hypothesized that high concentration of allergen results in the downregulation of IL-4 synthesis in CD4+ T cells. In this report, we demonstrated that CD4+ T cells from allergic donors produced high levels of IL-4 when stimulated with low concentrations of allergen (0.003-0.01 micrograms/ml), particularly when B cell-enriched populations presented the antigen. In contrast, the same responding CD4+ T cell population produced little IL-4 when stimulated with high concentrations of allergen (10-30 micrograms/ml), especially when monocytes were used as antigen-presenting cells (APC). The quantity of IL-4 produced was also found to be inversely related to the extent of proliferation of the CD4+ T cells in response to allergen/antigen; maximal proliferation of CD4+ T cells occurred in response to high concentrations of antigen when IL-4 production was minimal. Antigen presentation by B cell-enriched populations, instead of monocytes, induced less CD4+ T cell proliferation, but induced much greater IL-4 synthesis. Moreover, the addition of increasing numbers of APC (either B cells or monocytes) to cultures containing a constant number of responder T cells resulted in increased T cell proliferation and decreased IL-4 production. These results indicate that the circumstances under which memory T cells are activated, as well as the strength of the proliferative signal to T cells, greatly affect the quantity of IL-4 produced. Thus, our observations that the cytokine profile of allergen-specific memory CD4+ T cells can indeed be modulated by the antigen dose and APC type suggest that methods that preferentially enhance allergen uptake by monocytes and that enhance T cell proliferation will improve the clinical efficacy of immunotherapy in the treatment of allergic disease.


2020 ◽  
Vol 348 ◽  
pp. 103974
Author(s):  
Sergio Gómez-Olarte ◽  
Natalia I. Bolaños ◽  
Adriana Cuéllar ◽  
Concepción J. Puerta ◽  
John M. González

Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 279-284 ◽  
Author(s):  
O Ayanlar-Batuman ◽  
E Ebert ◽  
SP Hauptman

Abstract The present studies were designed to investigate the mechanism(s) of the defective T cell proliferative response to various stimuli in patients with B cell chronic lymphocytic leukemia B-CLL. In 14 patients with advanced B-CLL (stage III or IV) we found the T cell response in the autologous (auto) and allogeneic (allo) mixed lymphocyte reaction (MLR) to be 35.7% and 30% of the controls, respectively. Proliferation in the MLR depends upon the production of and response to interleukin 2 (IL 2), a T cell growth factor. IL 2 production in eight B-CLL patients was 22% of the control. The response to IL 2 was measured by the increase in the T cell proliferation in the MLR with the addition of IL 2. T cell proliferation in both the auto and allo MLR of CLL patients was significantly lower than in the controls after the addition of IL 2. The proliferative response of normal T cells to stimulation by CLL B cells was 50% of the control. This latter response was increased to control levels when cultures were supplemented with exogenous IL 2, suggesting that CLL B cells could stimulate IL 2 receptor generation in normal T cells in an allo MLR, but not IL 2 production. The presence of IL 2 receptors on activated T cells was directly determined using anti- Tac, a monoclonal antibody with specificity for the IL 2 receptor. Of the mitogen- or MLR-activated T cells in CLL patients, 6% and 10%, respectively, expressed Tac antigen, whereas identically stimulated control T cells were 60% and 47% Tac+, respectively. Our findings suggest that T cells in B-CLL are defective in their recognition of self or foreign major histocompatibility antigens as demonstrated by their impaired responsiveness in the MLR. Thus, these cells are unable to produce IL 2 or generate IL 2 receptors.


Blood ◽  
2005 ◽  
Vol 105 (6) ◽  
pp. 2421-2427 ◽  
Author(s):  
Laura Piccio ◽  
William Vermi ◽  
Kent S. Boles ◽  
Anja Fuchs ◽  
Carey A. Strader ◽  
...  

AbstractSignal-regulatory proteins (SIRPs) are transmembrane glycoproteins belonging to the immunoglobulin (Ig) superfamily that are expressed in the immune and central nervous systems. SIRPα binds CD47 and inhibits the function of macrophages, dendritic cells, and granulocytes, whereas SIRPβ1 is an orphan receptor that activates the same cell types. A recently identified third member of the SIRP family, SIRPβ2, is as yet uncharacterized in terms of expression, specificity, and function. Here, we show that SIRPβ2 is expressed on T cells and activated natural killer (NK) cells and, like SIRPα, binds CD47, mediating cell-cell adhesion. Consequently, engagement of SIRPβ2 on T cells by CD47 on antigen-presenting cells results in enhanced antigen-specific T-cell proliferation.


2021 ◽  
Author(s):  
◽  
Aras Toker

<p>Glatiramer acetate (GA) is approved for the treatment of relapsing-remitting multiple sclerosis (MS), and can suppress experimental autoimmune encephalomyelitis (EAE), a murine model of human MS. GA treatment is associated with the induction of anti-inflammatory TH2 responses and with the antigen specific expansion of regulatory T cells that counteract or inhibit pathogenic events in MS and EAE. These T cell mediated mechanisms of protection are considered to be a result of modulation of antigen presenting cells (APCs) by GA, rather than direct effects on T cells. However, it is unknown if GA preferentially targets a specific APC subset or can act through multiple APCs in vivo. In addition, GA-modulated innate cells may also exhibit direct antigen non-specific suppression of autoreactive cells. One objective of this study was to identify the in vivo target cell population of GA and to assess the potential of the target cells to antigen non-specifically suppress immune responses. Fluorophor-labelled GA bound to monocytes after intravenous injections, suggesting that monocytes may be the primary target of GA in vivo. In addition, intravenous GA treatment enhanced the intrinsic ability of monocytes to suppress T cell proliferation, both in vitro and in vivo. The findings of this study therefore suggest that GA-induced monocytes may contribute to GA therapy through direct mechanisms of antigen non-specific T cell immunosuppression. A further objective of this work was to investigate the potential of an in vivo drug targeting approach. This approach was hypothesised to increase the uptake of GA by the target cells and substantially improve GA treatment through antigen specific mechanisms such as induction of TH2 or regulatory T cells. Targeting antigens to professional APCs with an anti-MHC class II antibody resulted in significantly enhanced T cell proliferation in vitro. However, no EAE suppression occurred when GA was targeted to MHC class II in vivo. In addition, targeting GA specifically to monocytes also failed to suppress EAE. These findings suggest that GA treatment may selectively modulate monocytes to enhance their ability to inhibit autoreactive T cells, which could be part of the mechanism by which GA ameliorates MS. Targeting GA to a specific cell type may not be a powerful approach to improve treatment, because increased proliferation of GA specific T cells is not sufficient for disease suppression, and conjugation to antibodies may functionally reduce GA to a mere antigen devoid of immunomodulatory capacity.</p>


1993 ◽  
Vol 90 (23) ◽  
pp. 11054-11058 ◽  
Author(s):  
D J Lenschow ◽  
G H Su ◽  
L A Zuckerman ◽  
N Nabavi ◽  
C L Jellis ◽  
...  

Effective T-cell activation requires antigen/major histocompatibility complex engagement by the T-cell receptor complex in concert with one or more costimulatory molecules. Recent studies have suggested that the B7 molecule, expressed on most antigen presenting cells, functions as a costimulatory molecule through its interaction with CD28 on T cells. Blocking the CD28/B7 interaction with CTLA4Ig inhibits T-cell activation in vitro and induces unresponsiveness. We demonstrate that another molecule(s), termed B7-2, is expressed constitutively on dendritic cells, is differentially regulated on B cells, and costimulates naive T cells responding to alloantigen. B7-2 is up-regulated by lipopolysaccharide in < 6 hr and is maximally expressed on the majority of B cells by 24 hr. In contrast, B7 is detected only on a subset of activated B cells late (48 hr) after stimulation. In addition, Con A directly induces B7-2 but not B7 expression on B cells. Finally, although both anti-B7 monoclonal antibodies and CTLA4Ig blocked T-cell proliferation to antigen-expressing B7 transfectants, only CTLA4Ig had any significant inhibitory effect on T-cell proliferation to antigens expressed on natural antigen presenting cells, such as dendritic cells. Thus, B7 is not the only costimulatory molecule capable of initiating T-cell responses since a second ligand, B7-2, can provide a necessary second signal for T-cell activation.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3319-3319 ◽  
Author(s):  
Shimrit Ringelstein-Harlev ◽  
Irit Avivi ◽  
Shoham Shivtiel-Arad ◽  
Tami Katz

Abstract Introduction: Chronic lymphocytic leukemia (CLL) cells utilize several mechanisms of survival, some propagating proliferation and preventing apoptosis through intrinsic cell cycle signals, and others suppressing anti-tumor immune responses. Patients often present with a predominant population of regulatory T-cells (Tregs), and general features of T-cell exhaustion. Given the unique phenotype of CLL cells and the observed T-cell abnormalities we hypothesized that these cells function as regulatory B-cells (Bregs). Bregs, mostly explored in the autoimmune disease setting, produce interleukin-10 (IL10), which mediates attenuation of effector T-cell responses and enhances regulatory activity. These features have also been suggested to be responsible for weakening of anti-tumor immune responses. Breg activation requires stimulation of various combinations of Toll-like receptors (TLRs), the B-cell receptor (BCR) and CD40. Our previous studies have demonstrated that TLR9-stimulated CLL cells "acquire" Breg markers as well as PD1 and PDL1, which, while not being classic Breg discriminators, are established players in immune modulation. Moreover, such stimulation resulted in inhibition of proliferation of autologous T-cells. The current study aimed to further explore the regulatory characteristics of CLL cells focusing on additional suppressive mechanisms that may have a role in CLL immune evasion, particularly, the PD1/PDL1 axis. Methods: B-cells were isolated from peripheral blood mononuclear cells (PBMCs) of untreated CLL patients (Rai stages 0-IV). These B-CLL cells were stimulated with TLR-9 agonist (ODN) or CD40 ligand (CD40L) followed by their co-culture with isolated autologous CD4+ T cells. The regulatory features of B-CLL cells were studied by testing their effect on T cells. Their proliferation was evaluated using the CFSE method following stimulation with anti-CD3/CD28 antibodies and IL2; induction of Tregs (CD4+CD25highFoxp3+ population) was assessed by FACS analysis. The involvement of the PD1/PDL1 axis was examined by incubating B-cells with antiPD1 neutralizing antibodies prior to co-culture. Cell contact dependence was evaluated by plating B-cells in hanging cell culture inserts denying B and T cell contact while allowing flow of small soluble molecules. Results: CLL cells stimulated with ODN or CD40L, induced a significant increase in Tregs: 1.35±0.1-fold (p=0.03, N=12) for ODN and 1.7±0.2-fold (p=0.008, N=14) for CD40L, occurring in 68% and 80% of patients, respectively, while co-culture with unstimulated B-CLL cells did not result in the expansion of the Treg population. Treg induction was observed only under contact conditions (N=5), suggesting that this regulatory function requires cell-to-cell contact and cannot be carried out solely by secreted factors like IL10. Neutralization of PD1 on CLL B-cells affects both Treg induction and T-cell proliferation. Following CD40L stimulation, a 1.3-fold reduction in Treg percentage was observed when PD1 signaling was blunted (N=10). In contrast, PD1 blockage of ODN-stimulated CLL cells did not reduce Treg induction; however, it did adversely affect inhibition of T-cell proliferation (10%-decrease in inhibited T-cells; N=6). Conclusions: CLL cells "acquire" a Breg phenotype and function, inhibiting T-cell proliferation and inducing Tregs. These properties, while working together to promote immune regulation and cancer evasion, are elicited by different ligands in the cell environment and are likely to be mediated via separate pathways. The involvement of B-cell-associated PD1 in the induction of Tregs and inhibition of T-cell proliferation suggests a biologic role of PD1 signaling in CLL cells, strengthening the Breg phenotype. The current study has shown that CLL cells recruit several mechanisms operating cooperatively to support immune modulation and promote their survival. Disclosures No relevant conflicts of interest to declare.


2006 ◽  
Vol 291 (2) ◽  
pp. G253-G259 ◽  
Author(s):  
Ahmed Metwali ◽  
Tommy Setiawan ◽  
Arthur M. Blum ◽  
Joseph Urban ◽  
David E. Elliott ◽  
...  

This study determined whether Heligmosomoides polygyrus induces intestinal regulatory T cells. Splenic T cells proliferate strongly when cultured with anti-CD3 and antigen-presenting cells (APC). Lamina propria T cells from mice with H. polygyrus mixed with normal splenic T cells from uninfected mice inhibited proliferation over 90%. Lamina propria T cells from mice without H. polygyrus only modestly affected T cell proliferation. The worm-induced regulatory T cell was CD8+ and required splenic T cell contact to inhibit proliferation. The regulation also was IL-10 independent, but TAP-dependent, suggesting that it requires major histocompatibility complex (MHC) class I interaction. Additional studies employed mice with transgenic T cells that did not express functional TGF-β receptors. The lamina propria T regulator inhibited proliferation of these transgenic T cells nearly 100%, suggesting that TGF-β signaling via the T cell was not required. CD8+ T cells were needed for worms to reverse piroxicam-induced colitis in Rag mice (T and B cell deficient) reconstituted with IL-10−/− T cells. Thus H. polygyrus induces a regulatory CD8+ lamina propria T cell that inhibits T cell proliferation and that appears to have a role in control of colitis.


1993 ◽  
Vol 177 (1) ◽  
pp. 165-173 ◽  
Author(s):  
P Tan ◽  
C Anasetti ◽  
J A Hansen ◽  
J Melrose ◽  
M Brunvand ◽  
...  

The specificity of T lymphocyte activation is determined by engagement of the T cell receptor (TCR) by peptide/major histocompatibility complexes expressed on the antigen-presenting cell (APC). Lacking costimulation by accessory molecules on the APC, T cell proliferation does not occur and unresponsiveness to subsequent antigenic stimulus is induced. The B7/BB1 receptor on APCs binds CD28 and CTLA-4 on T cells, and provides a costimulus for T cell proliferation. Here, we show that prolonged, specific T cell hyporesponsiveness to antigenic restimulation is achieved by blocking the interaction between CD28 and B7/BB1 in human mixed leukocyte culture (MLC). Secondary T cell proliferative responses to specific alloantigen were inhibited by addition to the primary culture of monovalent Fab fragments of anti-CD28 monoclonal antibody (mAb) 9.3, which block interaction of CD28 with B7/BB1 without activating T cells. Hypo-responsiveness was also induced in MLC by CTLA4Ig, a chimeric immunoglobulin fusion protein incorporating the extracellular domain of CTLA-4 with high binding avidity for B7/BB1. Cells previously primed could also be made hyporesponsive, if exposed to alloantigen in the presence of CTLA4Ig. Maximal hyporesponsiveness was achieved in MLC after 2 d of incubation with CTLA4Ig, and was maintained for at least 27 d after removal of CTLA4Ig. Accumulation of interleukin 2 (IL-2) and interferon gamma but not IL-4 mRNA was blocked by CTLA4Ig in T cells stimulated by alloantigen. Antigen-specific responses could be restored by addition of exogenous IL-2 at the time of the secondary stimulation. Addition to primary cultures of the intact bivalent anti-CD28 mAb 9.3, or B7/BB1+ transfected CHO cells or exogenous IL-2, abrogated induction of hyporesponsiveness by CTLA4Ig. These data indicate that interaction of CD28 with B7/BB1 during TCR engagement with antigen is required to maintain T cell competence and that blocking such interaction can result in a state of T cell hyporesponsiveness.


Sign in / Sign up

Export Citation Format

Share Document