Regulation of pyruvate dehydrogenase during infusion of fatty acids of varying chain lengths in the perfused rat heart

1985 ◽  
Vol 17 (12) ◽  
pp. 1161-1171 ◽  
Author(s):  
P LATIPAA ◽  
K PEUHKURINEN ◽  
J HILTUNEN ◽  
I HASSINEN
1979 ◽  
Vol 237 (3) ◽  
pp. R167-R173 ◽  
Author(s):  
M. C. Kohn ◽  
M. J. Achs ◽  
D. Garfinkel

A physiologically and biochemically realistic model of the regulation of pyruvate dehydrogenase complex (PDH) was constructed for the perfused rat heart. It includes conversion between inactive (phospho) and active (dephospho) forms by a specific protein kinase (PDHK) and phosphoprotein phosphatase (PDHP). The activity of the tightly bound PDHK is influenced by synergistic activation/inhibition by acetyl CoA/CoASH and NADH/NAD. PDHK in this simulation was more sensitive to the fraction of ADP that was Mg2+-chelated than to the ATP-to-ADP ratio. Ca2+ stimulates binding of Mg2+-dependent PDHP to the complex; the bound enzyme was considered to be the active species. The fraction of PDH in the active form, rather than substrate and inhibitor levels, determines PDH activity under these conditions. This fraction depends on the present value and recent history of the difference between PDHK and PDHP activities. Both of these are active continuously and continuously control PDH.


FEBS Letters ◽  
1988 ◽  
Vol 238 (2) ◽  
pp. 445-449 ◽  
Author(s):  
John Chatham ◽  
Hiram.F. Gilbert ◽  
George K. Radda

1976 ◽  
Vol 154 (2) ◽  
pp. 327-348 ◽  
Author(s):  
A L. Kerbey ◽  
P J. Randle ◽  
R H. Cooper ◽  
S Whitehouse ◽  
H T. Pask ◽  
...  

The proportion of active (dephosphorylated) pyruvate dehydrogenase in perfused rat heart was decreased by alloxan-diabetes or by perfusion with media containing acetate, n-octanoate or palmitate. The total activity of the dehydrogenase was unchanged. 2. Pyruvate (5 or 25mM) or dichloroacetate (1mM) increased the proportion of active (dephosphorylated) pyruvate dehydrogenase in perfused rat heart, presumably by inhibiting the pyruvate dehydrogenase kinase reaction. Alloxan-diabetes markedly decreased the proportion of active dehydrogenase in hearts perfused with pyruvate or dichloroacetate. 3. The total activity of pyruvate dehydrogenase in mitochondria prepared from rat heart was unchanged by diabetes. Incubation of mitochondria with 2-oxo-glutarate plus malate increased ATP and NADH concentrations and decreased the proportion of active pyruvate dehydrogenase. The decrease in active dehydrogenase was somewhat greater in mitochondria prepared from hearts of diabetic rats than in those from hearts of non-diabetic rats. Pyruvate (0.1-10 mM) or dichloroacetate (4-50 muM) increased the proportion of active dehydrogenase in isolated mitochondria presumably by inhibition of the pyruvate dehydrogenase kinase reaction. They were much less effective in mitochondria from the hearts of diabetic rats than in those of non-diabetic rats. 4. The matrix water space was increased in preparations of mitochondria from hearts of diabetic rats. Dichloroacetate was concentrated in the matrix water of mitochondria of non-diabetic rats (approx. 16-fold at 10 muM); mitochondria from hearts of diabetic rats concentrated dichloroacetate less effectively. 5. The pyruvate dehydrogenase phosphate phosphatase activity of rat hearts and of rat heart mitochondria (approx. 1-2 munit/unit of pyruvate dehydrogenase) was not affected by diabetes. 6. The rate of oxidation of [1-14C]pyruvate by rat heart mitochondria (6.85 nmol/min per mg of protein with 50 muM-pyruvate) was approx. 46% of the Vmax. value of extracted pyruvate dehydrogenase (active form). Palmitoyl-L-carnitine, which increased the ratio of [acetyl-CoA]/[CoA] 16-fold, inhibited oxidation of pyruvate by about 90% without changing the proportion of active pyruvate dehydrogenase.


Nature ◽  
1962 ◽  
Vol 193 (4812) ◽  
pp. 270-271 ◽  
Author(s):  
E. A. NEWSHOLME ◽  
P. J. RANDLE ◽  
K. L. MANCHESTER

1983 ◽  
Vol 214 (2) ◽  
pp. 581-585 ◽  
Author(s):  
J G McCormack ◽  
P J England

The increases in the amount of active, non-phosphorylated, pyruvate dehydrogenase caused by positive inotropic agents (from a control value of about 10%, to 40% of total enzyme) in the perfused rat heart could be completely blocked by prior perfusion with 2.5 micrograms of Ruthenium Red/ml. A similar increase caused by 5 mM-pyruvate was not blocked. This concentration of Ruthenium Red caused a 25% decrease in contractile force of hearts perfused in the absence of positive inotropic agents; however, in their presence the contractile force reached the same value in the absence or presence of Ruthenium Red. Neither control nor stimulated phosphorylase a content was affected by Ruthenium Red. Verapamil (0.1 microM) also decreased control contraction (by 40%), but did not block the activation of pyruvate dehydrogenase caused by a rise in extracellular [Ca2+]. The results support the hypothesis that positive inotropic agents activate pyruvate dehydrogenase in rat heart by increasing intramitochondrial [Ca2+].


Sign in / Sign up

Export Citation Format

Share Document