Molecular dynamics of an excess proton in water using a non-additive valence bond force field

1997 ◽  
Vol 436-437 ◽  
pp. 555-565 ◽  
Author(s):  
Rodolphe Vuilleumier ◽  
Daniel Borgis
2013 ◽  
Vol 11 (4) ◽  
pp. 371-383 ◽  
Author(s):  
Yong-Lei Wang ◽  
Rochelle S. Lawrence ◽  
Zhong-Yuan Lu ◽  
Aatto Laaksonen

Plasma ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 294-308
Author(s):  
William A. Angermeier ◽  
Thomas G. White

Wave packet molecular dynamics (WPMD) has recently received a lot of attention as a computationally fast tool with which to study dynamical processes in warm dense matter beyond the Born–Oppenheimer approximation. These techniques, typically, employ many approximations to achieve computational efficiency while implementing semi-empirical scaling parameters to retain accuracy. We investigated three of the main approximations ubiquitous to WPMD: a restricted basis set, approximations to exchange, and the lack of correlation. We examined each of these approximations in regard to atomic and molecular hydrogen in addition to a dense hydrogen plasma. We found that the biggest improvement to WPMD comes from combining a two-Gaussian basis with a semi-empirical correction based on the valence-bond wave function. A single parameter scales this correction to match experimental pressures of dense hydrogen. Ultimately, we found that semi-empirical scaling parameters are necessary to correct for the main approximations in WPMD. However, reducing the scaling parameters for more ab-initio terms gives more accurate results and displays the underlying physics more readily.


RSC Advances ◽  
2014 ◽  
Vol 4 (89) ◽  
pp. 48621-48631 ◽  
Author(s):  
Eleanor R. Turpin ◽  
Sam Mulholland ◽  
Andrew M. Teale ◽  
Boyan B. Bonev ◽  
Jonathan D. Hirst

2013 ◽  
Vol 34 (13) ◽  
pp. 1136-1142 ◽  
Author(s):  
Xue X. Yao ◽  
Chang G. Ji ◽  
Dai Q. Xie ◽  
John Z.H. Zhang

Sign in / Sign up

Export Citation Format

Share Document