Molecular orbital studies of harmonic vibrations of nitrobenzene in the gas phase and solution using semi-empirical, ab initio and density functional theory calculations

1999 ◽  
Vol 482-483 ◽  
pp. 409-414 ◽  
Author(s):  
Piotr Urbanowicz ◽  
Teobald Kupka ◽  
Roman Wrzalik ◽  
Karol Pasterny
2006 ◽  
Vol 17 (08) ◽  
pp. 1179-1190 ◽  
Author(s):  
EMİNE DENİZ ÇALIŞIR ◽  
ŞAKİR ERKOÇ

The structural, vibrational, electronic and QSAR properties of the dipropyl sulfide (DPS) molecule in gas phase have been investigated theoretically by performing semi-empirical molecular orbital (AM1 and PM3), ab initio (RHF) and density functional theory calculations. The geometry of the molecule has been optimized, infrared spectrum (vibrational modes and intensities) and the electronic properties of the molecule have been calculated in its ground state. It has been found that DPS molecule kinetically may not be stable however it is thermodynamically stable.


Author(s):  
Banjo Semire ◽  
Isaiah Ajibade Adejoro ◽  
Olusegun Ayobami Odunola

In this paper, we theoretically studied the geometries, stabilities, electronic and thermodynamic properties of bridged bithiophene S-oxide (BTO-X) derivates (with X = BH2, SiH2, S, S=O, and O) by using semi-empirical methods, ab-initio, and Density functional theory. The geometries and thermodynamic parameters calculated by PM3 were in good agreement with that of B3LYP/6-31G(d). The bandgap calculated by B3LYP/6-31G(d) ranged from 3.94eV (BTO-O)-3.16eV (BTO-BH2). The absorption λmax calculated suing B3LYP/6-31G(d) shifted to longer wavelength with X=BH2, SiH2, and S=O due to enhancement of π-conjugated system whereas, BTO-S and BTO-O shifted to shorter wavelengths as compared to dimmer thiophene S-oxide (2TO).


2006 ◽  
Vol 110 (22) ◽  
pp. 7178-7188 ◽  
Author(s):  
Theo Kurtén ◽  
Markku R. Sundberg ◽  
Hanna Vehkamäki ◽  
Madis Noppel ◽  
Johanna Blomqvist ◽  
...  

2019 ◽  
Vol 21 (43) ◽  
pp. 24206-24211
Author(s):  
Seoung-Hun Kang ◽  
Jejune Park ◽  
Sungjong Woo ◽  
Young-Kyun Kwon

Using ab initio density functional theory calculations, we find four-fold degenerate Dirac points protected by two nonsymmorphic symmetries in phosphorene oxide with the inversion symmetry broken.


Sign in / Sign up

Export Citation Format

Share Document