Zidovudine-induced experimental myopathy: dual mechanism of mitochondrial damage

1999 ◽  
Vol 166 (2) ◽  
pp. 131-140 ◽  
Author(s):  
Alberto Masini ◽  
Claudia Scotti ◽  
Alberto Calligaro ◽  
Ornella Cazzalini ◽  
Lucia Anna Stivala ◽  
...  
2009 ◽  
Vol 47 (05) ◽  
Author(s):  
J Maléth ◽  
Z Rakonczay ◽  
V Venglovecz ◽  
Z Rázga ◽  
L Tiszlavicz ◽  
...  

2020 ◽  
Vol 13 (2) ◽  
pp. 85-93
Author(s):  
Kinjal Gangar ◽  
Lokesh Kumar Bhatt

One of the most common neurological disorders, which occurs among 1% of the population worldwide, is epilepsy. Therapeutic failure is common with epilepsy and nearly about 30% of patients fall in this category. Seizure suppression should not be the only goal while treating epilepsy but associated comorbidities, which can further worsen the condition, should also be considered. Treatment of such comorbidities such as depression, anxiety, cognition, attention deficit hyperactivity disorder and, various other disorders which co-exist with epilepsy or are caused due to epilepsy should also be treated. Novel targets or the existing targets are needed to be explored for the dual mechanism which can suppress both the disease and the comorbidity. New therapeutic targets such as IDO, nNOS, PAR1, NF-κb are being explored for their role in epilepsy and various comorbidities. This review explores recent therapeutic targets for the treatment of comorbidities associated with epilepsy.


2019 ◽  
Vol 20 (24) ◽  
pp. 6149 ◽  
Author(s):  
Yiqun Li ◽  
Nan Jiang ◽  
Yuding Fan ◽  
Yong Zhou ◽  
Wenzhi Liu ◽  
...  

Chinese giant salamander iridovirus (GSIV) is the causative pathogen of Chinese giant salamander (Andrias davidianus) iridovirosis, leading to severe infectious disease and huge economic losses. However, the infection mechanism by GSIV is far from clear. In this study, a Chinese giant salamander muscle (GSM) cell line is used to investigate the mechanism of cell death during GSIV infection. Microscopy observation and DNA ladder analysis revealed that DNA fragmentation happens during GSIV infection. Flow cytometry analysis showed that apoptotic cells in GSIV-infected cells were significantly higher than that in control cells. Caspase 8, 9, and 3 were activated in GSIV-infected cells compared with the uninfected cells. Consistently, mitochondria membrane potential (MMP) was significantly reduced, and cytochrome c was released into cytosol during GSIV infection. p53 expression increased at an early stage of GSIV infection and then slightly decreased late in infection. Furthermore, mRNA expression levels of pro-apoptotic genes participating in the extrinsic and intrinsic pathway were significantly up-regulated during GSIV infection, while those of anti-apoptotic genes were restrained in early infection and then rose in late infection. These results collectively indicate that GSIV induces GSM apoptotic cell death involving mitochondrial damage, caspases activation, p53 expression, and pro-apoptotic molecules up-regulation.


2021 ◽  
Vol 14 (9) ◽  
pp. 101159
Author(s):  
Li-Ting Niu ◽  
Yu-Qing Wang ◽  
Catherine C.L. Wong ◽  
Shuai-Xin Gao ◽  
Xiao-Dong Mo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document