andrias davidianus
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 39)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
Xiang Liu ◽  
Xiang Mao ◽  
Guo Ye ◽  
Menghong Wang ◽  
Ke Xue ◽  
...  

Small ◽  
2021 ◽  
pp. 2101699
Author(s):  
Ximu Zhang ◽  
Lin Jiang ◽  
Xian Li ◽  
Liwen Zheng ◽  
Ruyi Dang ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2224
Author(s):  
Yiqun Li ◽  
Yuding Fan ◽  
Yong Zhou ◽  
Nan Jiang ◽  
Mingyang Xue ◽  
...  

Chinese giant salamander iridovirus (GSIV) infection could lead to mitochondrial apoptosis in this animal, a process that involves B-cell lymphoma-2 (BCL-2) superfamily molecules. The mRNA expression level of Bcl-xL, a crucial antiapoptotic molecule in the BCL-2 family, was reduced in early infection and increased in late infection. However, the molecular mechanism remains unknown. In this study, the function and regulatory mechanisms of Chinese giant salamander (Andrias davidianus) Bcl-xL (AdBcl-xL) during GSIV infection were investigated. Western blotting assays revealed that the level of Bcl-xL protein was downregulated markedly as the infection progressed. Plasmids expressing AdBcl-xL or AdBcl-xL short interfering RNAs were separately constructed and transfected into Chinese giant salamander muscle cells. Confocal microscopy showed that overexpressed AdBcl-xL was translocated to the mitochondria after infection with GSIV. Additionally, flow cytometry analysis demonstrated that apoptotic progress was reduced in both AdBcl-xL-overexpressing cells compared with those in the control, while apoptotic progress was enhanced in cells silenced for AdBcl-xL. A lower number of copies of virus major capsid protein genes and a reduced protein synthesis were confirmed in AdBcl-xL-overexpressing cells. Moreover, AdBcl-xL could bind directly to the proapoptotic molecule AdBak with or without GSIV infection. In addition, the p53 level was inhibited and the mRNA expression levels of crucial regulatory molecules in the p53 pathway were regulated in AdBcl-xL-overexpressing cells during GSIV infection. These results suggest that AdBcl-xL plays negative roles in GSIV-induced mitochondrial apoptosis and virus replication by binding to AdBak and inhibiting p53 activation.


2021 ◽  
Vol 869 (1) ◽  
pp. 012067
Author(s):  
J Qian ◽  
X Y Zhai ◽  
L Guo ◽  
W G Chen ◽  
J J Fu ◽  
...  

Abstract By using of the double antibody sandwich method of ELISA, the activities of five cytokines including IL-2, IL-4, IFN-α, IFN-β and TNF-α from the blood serum, liver, intestine and spleen at two developmental stages of Chinese giant salamander (Andrias davidianus) were determined to analyze the distribution of the cytokines. The result indicated that five cytokines were found in these four tissues, while their activities were different in different tissues and different ages. The highest activity of IL-2 and IL-4 was all present in blood serum of two different ages. The activity of IFN-α was the highest in blood serum of 1-year-old and in spleen of 2-year-old, respectively. The activity of IFN-β was also highest in blood serum of two different ages. The activity of TNF-α was highest in liver of two different ages. Thus, this study provides convincing reference for blood serum and liver as the most important distribution area of Chinese giant salamander.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nan Jiang ◽  
Yuding Fan ◽  
Yong Zhou ◽  
Yan Meng ◽  
Wenzhi Liu ◽  
...  

The Chinese giant salamander, belonging to an ancient amphibian lineage, is the largest amphibian existing in the world, and is also an important animal for artificial cultivation in China. However, some aspects of the innate and adaptive immune system of the Chinese giant salamander are still unknown. The Chinese giant salamander iridovirus (GSIV), a member of the Ranavirus genus (family Iridoviridae), is a prominent pathogen causing high mortality and severe economic losses in Chinese giant salamander aquaculture. As a serious threat to amphibians worldwide, the etiology of ranaviruses has been mainly studied in model organisms, such as the Ambystoma tigrinum and Xenopus. Nevertheless, the immunity to ranavirus in Chinese giant salamander is distinct from other amphibians and less known. We review the unique immune system and antiviral responses of the Chinese giant salamander, in order to establish effective management of virus disease in Chinese giant salamander artificial cultivation.


2021 ◽  
Author(s):  
Yu Bai ◽  
Yonglu Meng ◽  
Jianlin Luo ◽  
Hui Wang ◽  
Guoyong Li ◽  
...  

The Chinese giant salamander, Andrias davidianus, is the largest amphibian species in the world; it is thus an economically and ecologically important species. The skin of A. davidianus exhibits complex adaptive structural and functional adaptations to facilitate survival in aquatic and terrestrial ecosystems. Here, we report the first full-length amphibian transcriptome from the dorsal skin of A. davidianus, which was assembled using hybrid sequencing and the PacBio and Illumina platforms. A total of 153,038 transcripts were hybrid assembled (mean length of 2,039 bp and N50 of 2,172 bp), and 133,794 were annotated in at least one database (nr, Swiss-Prot, KEGG, KOGs, GO, and nt). A total of 58,732, 68,742, and 115,876 transcripts were classified into 24 KOG categories, 1,903 GO term categories, and 46 KEGG pathways (level 2), respectively. A total of 207,627 protein-coding regions, 785 transcription factors, 27,237 potential long non-coding RNAs, and 8,299 simple sequence repeats were also identified. The hybrid-assembled transcriptome recovered more full-length transcripts, had a higher N50 contig length, and a higher annotation rate of unique genes compared with that assembled in previous studies using next-generation sequencing. The high-quality full-length reference gene set generated in this study will help elucidate the genetic characteristics of A. davidianus skin and aid the identification of functional skin proteins.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1480
Author(s):  
Qijun Wang ◽  
Lu Zhang ◽  
Hu Zhao ◽  
Qing Zhao ◽  
Jie Deng ◽  
...  

Understanding animal movement is a key question in ecology and biodiversity conservation, which is particularly important for the success of reintroduction projects. The movement of critically endangered Chinese giant salamander (Andrias davidianus) remains poorly understood due to the rareness of wild individuals of this species. We lack movement details about the full annual cycle after reintroduction, especially the abiotic and biotic influences that affect its movement. We utilized pilot reintroduction projects as opportunities to fill in some knowledge gaps on their movement ecology. We released 31 juvenile captive-reared Chinese giant salamanders of two age groups in two rivers in the Qinling Mountains of central China and monitored their daily movements for 16 months using surgically implanted radio transmitters. We examined the impacts of individual traits (body mass, body condition) and environmental conditions (temperature, precipitation, and moon phase) on their daily movement patterns. Data were analyzed using a mixed-effects logistic regression model to understand the drivers of their movement tendency (i.e., whether they move or not) and a linear mixed-effects model was used to understand the drivers of their movement distance. We found that movement tendency of the older salamander cohort was positively affected by the moon phase, increasing near the Full Moon, whereas the younger cohort of animals were not impacted by the moon phase. For daily distance moved, we found temperature had a strong positive effect on both cohorts, whereas precipitation had moderate but opposite effects on the two cohorts Body mass and body condition did not have any significant impacts on either age classes’ movement tendency or distance. This study provides insight into the abiotic factors that impact the temporal and spatial movement ecology of reintroduced giant salamander, which will in turn help with designing best practices for future releases and conservation of this iconic montane aquatic predator.


2021 ◽  
pp. 130061
Author(s):  
Xiaohua Chen ◽  
Wengang Jin ◽  
Dejing Chen ◽  
Mengrao Dong ◽  
Xi Xin ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document