A search for the circuitry of directional selectivity and neural adaptation through three-dimensional analysis of the outer plexiform layer of the rabbit retina

1974 ◽  
Vol 49 (1) ◽  
pp. 60-156 ◽  
Author(s):  
Fritiof S. Sjöstrand
1985 ◽  
Vol 53 (3) ◽  
pp. 699-713 ◽  
Author(s):  
S. A. Bloomfield ◽  
J. E. Dowling

Intracellular recordings were obtained from horizontal and bipolar cells of the superfused, isolated retina-eyecup of the rabbit. The putative neurotransmitters aspartate, glutamate, and several analogues were added to the superfusate while the membrane potential and light-responsiveness of the retinal neurons were monitored. Both L-aspartate and L-glutamate mimicked the actions of the endogenous photoreceptor transmitter on horizontal cells, on-bipolar cells, and off-bipolar cells. At applied concentrations of 2.5-20 mM, the actions of L-aspartate and L-glutamate were indistinguishable. D-aspartate potentiated the effects of both L-aspartate and L-glutamate on horizontal cells. This suggests that active uptake systems for these amino acids exist in the outer plexiform layer (OPL) of the rabbit retina. The glutamate analogue kainate produced effects similar to those of aspartate and glutamate on second-order neurons, but at concentrations lower by over two orders of magnitude. The glutamate analogue quisqualate had effects similar to kainate but with much less potency. The aspartate analogue n-methyl DL-aspartate (NMDLA) antagonized the effects of the photoreceptor transmitter on horizontal and off-bipolar cells. This action of NMDLA was only observed at low concentrations (50 microM). In addition, NMDLA could block the effects of exogenously applied kainate. The NMDLA had no clear effects on on-bipolar cells. The glutamate analogue 2-amino-4-phosphonobutyrate reversibly blocked the responses of on-bipolar cells but had no effect on either horizontal or off-bipolar cell responses. This suggests that on-bipolar cells possess a unique synaptic receptor. The aspartate analogue 2-amino-3-phosphonoproprionate did not show this selectivity, suggesting that this unique receptor is a glutamate-preferring receptor. The antagonists alpha-methyl glutamate, alpha-amino adipate, and glutamate diethyl ester all showed only a weak ability to antagonize the actions of the photoreceptor transmitter on second-order neurons. The results of this study indicate that glutamate or a glutamate-like substance is the likely transmitter of rods and cones in the rabbit retina. A comparison of the present findings with those previously obtained in lower vertebrate retinas suggests that the basic pharmacological design of the OPL of all vertebrate retinas is very similar.


2000 ◽  
Vol 17 (2) ◽  
pp. 255-262 ◽  
Author(s):  
DIANNA A. JOHNSON ◽  
STEPHEN L. MILLS ◽  
MICHAEL F. HABERECHT ◽  
STEPHEN C. MASSEY

In the mature rabbit retina, two classes of horizontal cells, A type and B type, provide lateral inhibition in the outer plexiform layer (OPL) and spatially modify the activation of bipolar cells by photoreceptors. Gap junctions connecting homologous horizontal cells determine the extent to which this inhibitory activity spreads laterally across the OPL. Little is currently known about the expression of gap junctions in horizontal cells during postnatal development or how cell–cell coupling might contribute to subsequent maturational events. We have examined the morphological attributes and coupling properties of developing A and B type horizontal cells in neonatal rabbit retina using intracellular injections of Lucifer Yellow and Neurobiotin. Prelabeling with DAPI permitted the targeting of horizontal cell bodies for intracellular injection in perfused preparations of isolated retina. A and B type horizontal cells were identifiable at birth although their dendritic field sizes had not reached adult proportions and their synaptic contacts in the OPL were minimal. Both cell types exhibited homologous dye coupling at birth. Similar to that seen in the adult, no heterologous coupling was observed, and homologous coupling among A type cells was stronger than that observed among B type cells. The spread of tracer compounds through gap junctions of morphologically immature horizontal cells suggests that ions and other small, bioactive compounds may likewise spread through coupled, horizontal networks to coordinate the subsequent maturational of emerging outer plexiform layer pathways.


Author(s):  
S. Naka ◽  
R. Penelle ◽  
R. Valle

The in situ experimentation technique in HVEM seems to be particularly suitable to clarify the processes involved in recrystallization. The material under investigation was unidirectionally cold-rolled titanium of commercial purity. The problem was approached in two different ways. The three-dimensional analysis of textures was used to describe the texture evolution during the primary recrystallization. Observations of bulk-annealed specimens or thin foils annealed in the microscope were also made in order to provide information concerning the mechanisms involved in the formation of new grains. In contrast to the already published work on titanium, this investigation takes into consideration different values of the cold-work ratio, the temperature and the annealing time.Two different models are commonly used to explain the recrystallization textures i.e. the selective grain growth model (Beck) or the oriented nucleation model (Burgers). The three-dimensional analysis of both the rolling and recrystallization textures was performed to identify the mechanismsl involved in the recrystallization of titanium.


Sign in / Sign up

Export Citation Format

Share Document