lower vertebrate
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 13)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Vol 15 ◽  
Author(s):  
Kathleen E. Cullen ◽  
Rui-Han Wei

The role of the mammalian vestibular efferent system in everyday life has been a long-standing mystery. In contrast to what has been reported in lower vertebrate classes, the mammalian vestibular efferent system does not appear to relay inputs from other sensory modalities to the vestibular periphery. Furthermore, to date, the available evidence indicates that the mammalian vestibular efferent system does not relay motor-related signals to the vestibular periphery to modulate sensory coding of the voluntary self-motion generated during natural behaviors. Indeed, our recent neurophysiological studies have provided insight into how the peripheral vestibular system transmits head movement-related information to the brain in a context independent manner. The integration of vestibular and extra-vestibular information instead only occurs at next stage of the mammalian vestibular system, at the level of the vestibular nuclei. The question thus arises: what is the physiological role of the vestibular efferent system in mammals? We suggest that the mammalian vestibular efferent system does not play a significant role in short-term modulation of afferent coding, but instead plays a vital role over a longer time course, for example in calibrating and protecting the functional efficacy of vestibular circuits during development and aging in a role analogous the auditory efferent system.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1042
Author(s):  
Xin-Xin Chen ◽  
Wei-Chen Wu ◽  
Mang Shi

In a previous study, a metatranscriptomics survey of RNA viruses in several important lower vertebrate host groups revealed huge viral diversity, transforming the understanding of the evolution of vertebrate-associated RNA virus groups. However, the diversity of the DNA and retro-transcribing viruses in these host groups was left uncharacterized. Given that RNA sequencing is capable of revealing viruses undergoing active transcription and replication, we collected previously generated datasets associated with lower vertebrate hosts, and searched them for DNA and retro-transcribing viruses. Our results revealed the complete genome, or “core gene sets”, of 18 vertebrate-associated DNA and retro-transcribing viruses in cartilaginous fishes, ray-finned fishes, and amphibians, many of which had high abundance levels, and some of which showed systemic infections in multiple organs, suggesting active transcription or acute infection within the host. Furthermore, these new findings recharacterized the evolutionary history in the families Hepadnaviridae, Papillomaviridae, and Alloherpesviridae, confirming long-term virus–host codivergence relationships for these virus groups. Collectively, our results revealed reliable and sufficient information within metatranscriptomics sequencing to characterize not only RNA viruses, but also DNA and retro-transcribing viruses, and therefore established a key methodology that will help us to understand the composition and evolution of the total “infectome” within a diverse range of vertebrate hosts.


2021 ◽  
Vol 14 (6) ◽  
pp. 500
Author(s):  
Hung-Chieh Lee ◽  
Cheng-Yung Lin ◽  
Huai-Jen Tsai

The nearly simultaneous convergence of human genetics and advanced molecular technologies has led to an improved understanding of human diseases. At the same time, the demand for drug screening and gene function identification has also increased, albeit time- and labor-intensive. However, bridging the gap between in vitro evidence from cell lines and in vivo evidence, the lower vertebrate zebrafish possesses many advantages over higher vertebrates, such as low maintenance, high fecundity, light-induced spawning, transparent embryos, short generation interval, rapid embryonic development, fully sequenced genome, and some phenotypes similar to human diseases. Such merits have popularized the zebrafish as a model system for biomedical and pharmaceutical studies, including drug screening. Here, we reviewed the various ways in which zebrafish serve as an in vivo platform to perform drug and protein screening in the fields of rare human diseases, social behavior and cancer studies. Since zebrafish mutations faithfully phenocopy many human disorders, many compounds identified from zebrafish screening systems have advanced to early clinical trials, such as those for Adenoid cystic carcinoma, Dravet syndrome and Diamond–Blackfan anemia. We also reviewed and described how zebrafish are used to carry out environmental pollutant detection and assessment of nanoparticle biosafety and QT prolongation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yan-Mei Chen ◽  
Edward C. Holmes ◽  
Xiao Chen ◽  
Jun-Hua Tian ◽  
Xian-Dan Lin ◽  
...  

Abstract Despite increasing evidence that antibiotic resistant pathogens are shared among humans and animals, the diversity, abundance and patterns of spread of antibiotic resistance genes (ARGs) in wildlife remains unclear. We identified 194 ARGs associated with phenotypic resistance to 13 types of antibiotic in meta-transcriptomic data generated from a broad range of lower vertebrates residing in both terrestrial and aquatic habitats. These ARGs, confirmed by PCR, included those that shared high sequence similarity to clinical isolates of public health concern. Notably, the lower vertebrate resistome varied by ecological niche of the host sampled. The resistomes in marine fish shared high similarity and were characterized by very high abundance, distinct from that observed in other habitats. An assessment of ARG mobility found that ARGs in marine fish were frequently co-localized with mobile elements, indicating that they were likely spread by horizontal gene transfer. Together, these data reveal the remarkable diversity and transcriptional levels of ARGs in lower vertebrates, and suggest that these wildlife species might play an important role in the global spread of ARGs.


GeroScience ◽  
2020 ◽  
Author(s):  
Marta Carnovali ◽  
Giuseppe Banfi ◽  
Massimo Mariotti

Abstract After middle age, in human bone, the resorption usually exceeds formation resulting in bone loss and increased risk of fractures in the aged population. Only few in vivo models in higher vertebrates are available for pathogenic and therapeutic studies about bone aging. Among these, male Danio rerio (zebrafish) can be successfully used as low vertebrate model to study degenerative alterations that affect the skeleton during aging, reducing the role of sex hormones. In this paper, we investigated the early bone aging mechanisms in male zebrafish (3, 6, 9 months old) scales evaluating the physiological changes and the effects of prednisolone, a pro-osteoporotic drug. The results evidentiated an age-dependent reduction of the mineralization rate in the fish scales, as highlighted by growing circle measurements. Indeed, the osteoblastic ALP activity at the matrix deposition site was found progressively downregulated. The higher TRAP activity was found in 63% of 9-month-old fish scales associated with resorption lacunae along the scale border. Gene expression analysis evidentiated that an increase of the tnfrsf1b (homolog of human rank) in aging scales may be responsible for resorption stimulation. Interestingly, prednisolone inhibited the physiological growth of the scale and induced in aged scales a more significant bone resorption compared with untreated fish (3.8% vs 1.02%). Bone markers analysis shown a significant reduction of ALP/TRAP ratio due to a prednisolone-dependent stimulation of tnfsf11 (homolog of human rankl) in scales of older fish. The results evidentiated for the first time the presence of a senile male osteoporosis in lower vertebrate. This new model could be helpful to identify the early mechanisms of bone aging and new therapeutic strategies to prevent age-related bone alterations in humans.


2020 ◽  
Vol 152 (3) ◽  
Author(s):  
Norianne T. Ingram ◽  
Alapakkam P. Sampath ◽  
Gordon L. Fain

Vertebrate photoreceptor cells respond to light through a closure of CNG channels located in the outer segment. Multiple voltage-sensitive channels in the photoreceptor inner segment serve to transform and transmit the light-induced outer-segment current response. Despite extensive studies in lower vertebrates, we do not know how these channels produce the photoresponse of mammalian photoreceptors. Here we examined these ionic conductances recorded from single mouse cones in unlabeled, dark-adapted retinal slices. First, we show measurements of the voltage dependence of the light response. After block of voltage-gated Ca2+ channels, the light-dependent current was nearly linear within the physiological range of voltages with constant chord conductance and a reversal potential similar to that previously determined in lower vertebrate photoreceptors. At a dark resting membrane potential of −45 mV, cones maintain a standing Ca2+ current (iCa) between 15 and 20 pA. We characterized the time and voltage dependence of iCa and a calcium-activated anion channel. After constitutive closure of the CNG channels by the nonhydrolysable analogue GTP-γ-S, we observed a light-dependent increase in iCa followed by a Ca2+-activated K+ current, both probably the result of feedback from horizontal cells. We also recorded the hyperpolarization-activated cyclic nucleotide-gated (HCN) conductance (ih) and measured its current-voltage relationship and reversal potential. With small hyperpolarizations, ih activated with a time constant of 25 ms; activation was speeded with larger hyperpolarizations. Finally, we characterized two voltage-gated K+-conductances (iK). Depolarizing steps beginning at −10 mV activated a transient, outwardly rectifying iK blocked by 4-AP and insensitive to TEA. A sustained iK isolated through subtraction was blocked by TEA but was insensitive to 4-AP. The sustained iK had a nearly linear voltage dependence throughout the physiological voltage range of the cone. Together these data constitute the first comprehensive study of the channel conductances of mouse photoreceptors.


DNA Research ◽  
2019 ◽  
Vol 26 (6) ◽  
pp. 485-494 ◽  
Author(s):  
Li Ren ◽  
Xiaojing Yan ◽  
Liu Cao ◽  
Jiaming Li ◽  
Xueyin Zhang ◽  
...  

Abstract Hybridization and polyploidy are pervasive evolutionary features of flowering plants and frequent among some animal groups, such as fish. These processes always lead to novel genotypes and various phenotypes, including growth heterosis. However, its genetic basis in lower vertebrate is still poorly understood. Here, we conducted transcriptome-level analyses of the allopolyploid complex of Carassius auratus red var. (R) (♀) × Cyprinus carpio L. (C) (♂), including the allodiploid and allotetraploid with symmetric subgenomes, and the two allotriploids with asymmetric subgenomes. The gradual changes of gene silencing and novel gene expression suggested the weakening of the constraint of polymorphic expression in genotypic changes. Then, analyses of the direction and magnitude of homoeolog expression exhibited various asymmetric expression patterns, which supported that R incomplete dominance and dosage compensation were co-regulated in the two triploids. Under these effects, various magnitudes of R-homoeolog expression bias were observed in growth-regulated genes, suggesting that they might contribute to growth heterosis in the two triploids. The determination of R incomplete dominance and dosage compensation, which might be led by asymmetric subgenomes and multiple sets of homologous chromosomes, explained why various expression patterns were shaped and their potential contribution to growth heterosis in the two triploids.


2019 ◽  
Vol 95 (2) ◽  
pp. 429-452
Author(s):  
Kleyton Magno Cantalice ◽  
Alejandra Martínez-Melo ◽  
Violeta Amparo Romero-Mayén

Fishes are a paraphyletic group composed by craniates except for the four-limbed clade Tetrapoda. This group was the only vertebrate representative until the Devonian but now comprises almost half of the vertebrate species, dominating nearly all aquatic environments. The fossil record is the key to understand the ancient paleobiodiversity and the patterns that lead the modern fish fauna, and paleontological collections play a fundamental role in providing accommodation, maintenance, and access to the specimens and their respective metadata. Here we present a systematic checklist of fossil fishes housed in the type collection of the Colección Nacional de Paleontología which is located at the Instituto de Geología of Universidad Nacional Autónoma de México. Currently housed in the type collection are 14 chondrichthyan specimens, belonging to two superorders, five orders, seven families, 10 genera, and five nominal species, and 361 osteichthyan specimens, belonging to eight orders, nine families, nine genera, and 26 nominal species. These fossils come from 32 localities and 15 geological units, which range temporally from the Jurassic to the Pleistocene. The paleoichthyofauna housed in the type collection of the Colección Nacional de Paleontología is remarkable for its singularity and reveals new insights about the origin and diversification of many groups of fishes. The recovery and curation of this fossil material indicates that knowledge of Mexican fossil fish diversity and its role in understanding lower vertebrate evolution are just emerging and reaffirms the importance of the biological and paleontological collections to the future biodiversity research.


2019 ◽  
Vol 93 (21) ◽  
Author(s):  
Long-Feng Lu ◽  
Xiao-Yu Zhou ◽  
Can Zhang ◽  
Zhuo-Cong Li ◽  
Dan-Dan Chen ◽  
...  

ABSTRACT Interferon (IFN) production activated by phosphorylated interferon regulatory factor 7 (IRF7) is a pivotal process during host antiviral infection. For viruses, suppressing the host IFN response is beneficial for viral proliferation; in such cases, evoking host-derived IFN negative regulators would be very useful for viruses. Here, we report that the zebrafish rapunzel 5 (RPZ5) protein which activated by virus degraded phosphorylated IRF7 is activated by TANK-binding kinase 1 (TBK1), leading to a reduction in IFN production. Upon viral infection, zebrafish rpz5 was significantly upregulated, as was ifn, in response to the stimulation. Overexpression of RPZ5 blunted the IFN expression induced by both viral and retinoic acid-inducible gene I (RIG-I) like-receptor (RLR) factors. Subsequently, RPZ5 interacted with RLRs but did not affect the stabilization of the proteins in the normal state. Interestingly, RPZ5 degraded the phosphorylated IRF7 under TBK1 activation through K48-linked ubiquitination. Finally, the overexpression of RPZ5 remarkably reduced the host cell antiviral capacity. These findings suggest that zebrafish RPZ5 is a negative regulator of phosphorylated IRF7 and attenuates IFN expression during viral infection, providing insight into the IFN balance mechanism in fish. IMPORTANCE The phosphorylation of IRF7 is helpful for host IFN production to defend against viral infection; thus, it is a potential target for viruses to mitigate the antiviral response. We report that the fish RPZ5 is an IFN negative regulator induced by fish viruses and degrades the phosphorylated IRF7 activated by TBK1, leading to IFN suppression and promotion of viral proliferation. These findings reveal a novel mechanism for interactions between the host cell and viruses in the lower vertebrate.


Sign in / Sign up

Export Citation Format

Share Document