Estimation of the reliability function using the delay-time models

1997 ◽  
Vol 37 (2) ◽  
pp. 323-327 ◽  
Author(s):  
A.F. Attia
CICTP 2020 ◽  
2020 ◽  
Author(s):  
Jing Shi ◽  
Qiyuan Peng ◽  
Ling Liu

2020 ◽  
pp. 144-148

Chaos synchronization of delayed quantum dot light emitting diode has been studied theortetically which are coupled via the unidirectional and bidirectional. at synchronization of chaotic, The dynamics is identical with delayed optical feedback for those coupling methods. Depending on the coupling parameters and delay time the system exhibits complete synchronization, . Under proper conditions, the receiver quantum dot light emitting diode can be satisfactorily synchronized with the transmitter quantum dot light emitting diode due to the optical feedback effect.


2005 ◽  
Vol 125 (3) ◽  
pp. 235-240
Author(s):  
Terukazu Matsugi ◽  
Katsunori Arase ◽  
Hideki Motomura ◽  
Masafumi Jinno ◽  
Masaharu Aono
Keyword(s):  

2014 ◽  
Vol E97.C (5) ◽  
pp. 419-422
Author(s):  
Masayuki YAMADA ◽  
Ken UCHIDA ◽  
Yasuyuki MIYAMOTO

Author(s):  
Hazim Mansour Gorgees ◽  
Bushra Abdualrasool Ali ◽  
Raghad Ibrahim Kathum

     In this paper, the maximum likelihood estimator and the Bayes estimator of the reliability function for negative exponential distribution has been derived, then a Monte –Carlo simulation technique was employed to compare the performance of such estimators. The integral mean square error (IMSE) was used as a criterion for this comparison. The simulation results displayed that the Bayes estimator performed better than the maximum likelihood estimator for different samples sizes.


Author(s):  
Nadia Hashim Al-Noor ◽  
Shurooq A.K. Al-Sultany

        In real situations all observations and measurements are not exact numbers but more or less non-exact, also called fuzzy. So, in this paper, we use approximate non-Bayesian computational methods to estimate inverse Weibull parameters and reliability function with fuzzy data. The maximum likelihood and moment estimations are obtained as non-Bayesian estimation. The maximum likelihood estimators have been derived numerically based on two iterative techniques namely “Newton-Raphson” and the “Expectation-Maximization” techniques. In addition, we provide compared numerically through Monte-Carlo simulation study to obtained estimates of the parameters and reliability function in terms of their mean squared error values and integrated mean squared error values respectively.


Sign in / Sign up

Export Citation Format

Share Document