Paramagnetic absorption in iron ammonium alum in a constant parallel field

Physica ◽  
1938 ◽  
Vol 5 (10) ◽  
pp. 999-1008 ◽  
Author(s):  
F. Brons ◽  
C.J. Gorter
Physica ◽  
1943 ◽  
Vol 10 (5) ◽  
pp. 337-347 ◽  
Author(s):  
L.J Dijkstra ◽  
C.J Gorter ◽  
J Volger

The specific heats of three paramagnetic salts, neodymium magnesium nitrate, manganous ammonium sulphate and ferric ammonium alum, have been measured at temperatures below 1°K using the method of γ -ray heating. The temperature measurements were made in the first instance in terms of the magnetic susceptibilities of the salts, the relation of the susceptibility to the absolute temperature having been determined for each salt in earlier experiments. The γ -ray heatings gave the specific heat in arbitrary units. The absolute values of the specific heats were found by extrapolating the results of paramagnetic relaxation measurements at higher temperatures. The measured specific heat of neodymium magnesium nitrate is compared with the value calculated from paramagnetic resonance data, and good agreement is found.


1992 ◽  
Vol 267 (1-3) ◽  
pp. 509-513 ◽  
Author(s):  
A. Fasolino ◽  
G. Platero ◽  
M. Potemski ◽  
J.C. Maan ◽  
K. Ploog ◽  
...  
Keyword(s):  

2017 ◽  
Vol 36 (3) ◽  
pp. 822-828
Author(s):  
SG Bawa ◽  
AS Ahmed ◽  
PC Okonkwo

Thermal stability of transitional alumina phases produced from ammonium alum using Kankara kaolin as starting material was studied. Wet beneficiation method was employed to purify the starting material, after which it was calcined and dealuminated with sulphuric acid. The elemental composition, mineralogical, and physiological analyses were carried out using X-ray fluorescence (XRF), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) techniques respectively. The ammonium alum was thermally treated by varying the calcination temperature from 700 to 1200°C and varying the time of calcination from 1 to 4 h. The formation of gamma alumina began at calcination temperature of 825°C for calcination time of 3 h, which was found to be lower than reported works of 900°C. It was found to be stable at higher temperature of 1125°C, above which phase transformation to alpha alumina was observed. The observed wide range of thermal stability of the gamma alumina phase gives it good advantage to be used for high temperature applications, such as support for catalyst promoters. Alpha alumina phase formation began at 1150°C and was fully formed at 1200°C. BET specific surface area of 166 m2/g was obtained for the gamma alumina phase which was high enough for it application as support for catalyst, catalyst and adsorbent. http://dx.doi.org/10.4314/njt.v36i3.23


1955 ◽  
Vol 23 (9) ◽  
pp. 1731-1731 ◽  
Author(s):  
Ricardo C. Pastor ◽  
John Turkevich

2019 ◽  
Vol 774 ◽  
pp. 1151-1159 ◽  
Author(s):  
Weizao Liu ◽  
Shu Yin ◽  
Dongmei Luo ◽  
Guoquan Zhang ◽  
Hairong Yue ◽  
...  

2020 ◽  
Vol 494 (1) ◽  
pp. 349-362
Author(s):  
E J Gonzalez ◽  
M Chalela ◽  
M Jauzac ◽  
D Eckert ◽  
M Schaller ◽  
...  

ABSTRACT In the context of the Beyond Ultradeep Frontier Fields And Legacy Observations (BUFFALO) survey, we present a new analysis of the merging galaxy cluster MACS J0416.1−2403 (z = 0.397) and its parallel field using Hubble Frontier Fields (HFF) data. We measure the surface mass density from a weak-lensing analysis and characterize the overall matter distribution in both the cluster and parallel fields. The surface mass distribution derived for the parallel field shows clumpy overdensities connected by filament-like structures elongated in the direction of the cluster core. We also characterize the X-ray emission in the parallel field and compare it with the lensing mass distribution. We identify five mass peaks at the >5σ level over the two fields, four of them being in the cluster one. Three of them are located close to galaxy overdensities and one is also close to an excess in the X-ray emission. Nevertheless, two of them have neither optical nor X-ray counterpart and are located close to the edges of the field of view, thus further studies are needed to confirm them as substructures. Finally, we compare our results with the predicted subhalo distribution of one of the Hydrangea/C-EAGLE simulated cluster. Significant differences are obtained suggesting the simulated cluster is at a more advanced evolutionary stage than MACS J0416.1−2403. Our results anticipate the upcoming BUFFALO observations that will link the two HFF fields, extending further the HST coverage.


Sign in / Sign up

Export Citation Format

Share Document