Time and length scales of buoyancy-driven flow structures in a rotating hydromagnetic fluid

1997 ◽  
Vol 104 (4) ◽  
pp. 307-329 ◽  
Author(s):  
Hisayoshi Shimizu ◽  
David E. Loper
Soft Matter ◽  
2021 ◽  
Author(s):  
Abhik Samui ◽  
Julia M. Yeomans ◽  
Sumesh P. Thampi

Different flow regimes realised by a channel-confined active nematic have a characteristic length same as channel width. Flow structures exhibit the intrinsic length scale of the fluid only in the fully developed active turbulence regime.


2014 ◽  
Vol 741 ◽  
pp. 98-138 ◽  
Author(s):  
S. Sahu ◽  
Y. Hardalupas ◽  
A. M. K. P. Taylor

AbstractThis paper discusses the interaction between droplets and entrained turbulent air flow in the far-downstream locations of a confined polydispersed isothermal spray. Simultaneous and planar measurements of droplet and gas velocities in the spray along with droplet size are obtained with the application of a novel experimental technique, developed by Hardalupaset al. (Exp. Fluids, vol. 49, 2010, pp. 417–434), which combines interferometric laser imaging for droplet sizing (ILIDS) with particle image velocimetry (PIV). These measurements quantified the spatial correlation coefficients of droplet–gas velocity fluctuations ($R_{dg}$) and droplet–droplet velocity fluctuations ($R_{dd}$) conditional on droplet size classes, for various separation distances, and for axial and cross-stream velocity components. At the measurement location close to the spray edge, with increasing droplet size,$R_{dg}$was found to increase in axial direction and decrease in cross-stream direction. This suggests that as the gas-phase turbulence becomes more anisotropic away from the spray axis, the gravitational influence on droplet–gas correlated motion tends to increase. The effective length scales of the correlated droplet–gas motion were evaluated and compared with that for gas and droplet motion. The role of different turbulent eddies of the gas flow on the droplet–gas interaction was examined. The flow structures were extracted using proper orthogonal decomposition (POD) of the instantaneous gas velocity data, and their contribution on the spatial droplet–gas velocity correlation was evaluated, which quantified the momentum transfer between the two phases at different length scales of the gas flow. The droplets were observed to augment turbulence for the first three POD modes (larger scales) and attenuate it for the rest of the modes (smaller scales). It has been realized that apart from droplet Stokes number and mass loading, the dynamic range of length scales of the gas flow and the relative turbulent kinetic energy content of the flow structures (POD modes) must be considered in order to conclude if the droplets enhance or reduce the carrier-phase turbulence especially at the lower wavenumbers.


Author(s):  
N. P. Benfer ◽  
B. A. King ◽  
C. J. Lemckert ◽  
S. Zigic

2012 ◽  
Vol 40 (2) ◽  
pp. 124-150
Author(s):  
Klaus Wiese ◽  
Thiemo M. Kessel ◽  
Reinhard Mundl ◽  
Burkhard Wies

ABSTRACT The presented investigation is motivated by the need for performance improvement in winter tires, based on the idea of innovative “functional” surfaces. Current tread design features focus on macroscopic length scales. The potential of microscopic surface effects for friction on wintery roads has not been considered extensively yet. We limit our considerations to length scales for which rubber is rough, in contrast to a perfectly smooth ice surface. Therefore we assume that the only source of frictional forces is the viscosity of a sheared intermediate thin liquid layer of melted ice. Rubber hysteresis and adhesion effects are considered to be negligible. The height of the liquid layer is driven by an equilibrium between the heat built up by viscous friction, energy consumption for phase transition between ice and water, and heat flow into the cold underlying ice. In addition, the microscopic “squeeze-out” phenomena of melted water resulting from rubber asperities are also taken into consideration. The size and microscopic real contact area of these asperities are derived from roughness parameters of the free rubber surface using Greenwood-Williamson contact theory and compared with the measured real contact area. The derived one-dimensional differential equation for the height of an averaged liquid layer is solved for stationary sliding by a piecewise analytical approximation. The frictional shear forces are deduced and integrated over the whole macroscopic contact area to result in a global coefficient of friction. The boundary condition at the leading edge of the contact area is prescribed by the height of a “quasi-liquid layer,” which already exists on the “free” ice surface. It turns out that this approach meets the measured coefficient of friction in the laboratory. More precisely, the calculated dependencies of the friction coefficient on ice temperature, sliding speed, and contact pressure are confirmed by measurements of a simple rubber block sample on artificial ice in the laboratory.


Sign in / Sign up

Export Citation Format

Share Document