Fluidization on an inclined gas distributor with a very low pressure drop: hydrodynamics, heat transfer, industrial application

2001 ◽  
Vol 121 (2-3) ◽  
pp. 131-137 ◽  
Author(s):  
A.P Baskakov ◽  
S.S Skachkova
2008 ◽  
Author(s):  
Yang Chen ◽  
Per Lundqvist ◽  
Bjo¨rn Palm

In the current study, a novel gas water heat exchanger with minichannels is designed, built and tested. The heat exchanger is mainly composed of a number of concentric ring shaped plates, which are made up of several heat exchanger tubes. The ring shaped plates are arranged in parallel and placed in a shell. The heat exchanger is designed as a counter current heat exchanger with laminar flow on the heat exchanger’s shell-side (gas side) and therefore has a very low pressure drop on the shell side. The heat exchanger was tested with water and hot air on its tube-side and shell-side respectively. All the necessary parameters like inlet and outlet temperatures on tube-side and shell-side as well as the pressure drop, flow rate of fluids, etc. were measured. Different existing correlations were used to calculate the overall heat transfer coefficient and the results were compared with the measured value. The measured results show that the new designed heat exchanger can achieve a good heat transfer performance and also maintain a low pressure drop on shell-side (gas side).


Author(s):  
Edgar Hansjosten ◽  
Achim Wenka ◽  
Andreas Hensel ◽  
Walther Benzinger ◽  
Michael Klumpp ◽  
...  

Author(s):  
Ankit Kalani ◽  
Satish G. Kandlikar

Heat dissipation beyond 1 kW/cm2 accompanied with high heat transfer coefficient and low pressure drop using water has been a long-standing goal in the flow boiling research directed toward electronic cooling application. In the present work, three approaches are combined to reach this goal: (a) a microchannel with a manifold to increase critical heat flux (CHF) and heat transfer coefficient (HTC), (b) a tapered manifold to reduce the pressure drop, and (c) high flow rates for further enhancing CHF from liquid inertia forces. A CHF of 1.07 kW/cm2 was achieved with a heat transfer coefficient of 295 kW/m2°C with a pressure drop of 30 kPa. Effect of flow rate on CHF and HTC is investigated. High speed visualization to understand the underlying bubble dynamics responsible for low pressure drop and high CHF is also presented.


Author(s):  
Marian Carroll ◽  
Jeff Punch ◽  
Eric Dalton ◽  
Niamh Richardson

Contemporary Photonic Integrated Circuit (PIC) packages within the communications network infrastructure have reached a thermal limit. Integrated packages involving microfluidic channels are an appealing development to improve the thermal design of future PIC packages, to significantly improve the removal of heat fluxes in order to sustain the expected enhanced data traffic growth. The Thermally Integrated Smart Photonics Systems (TIPS) project aims to develop and demonstrate a thermally enabled integrated platform that is scalable, to meet the predicted data traffic demands. Full system integration requires an integrated pumping solution, therefore a primary heat exchanger that can deliver the required thermal performance with a low pressure drop (ΔP) is needed. A channel containing a single array of cylindrical posts offers a low pressure drop, similar to a large hydraulic diameter minichannel. Local destabilization of the flow would provide heat transfer enhancement. In particular, non-Newtonian fluids have been shown to exhibit significant mixing in such configurations. Micro Particle-Image Velocimetry (μPIV) measurements were taken for Newtonian and viscoelastic fluids within this channel. Instabilities associated with the viscoelastic fluid were recorded immediately upstream of the post array. This flow exhibited almost a four-fold increase in mixing at comparable flow rates to the Newtonian fluid tested. This suggests that the Nusselt number enhancement associated with such flows could increase the heat transfer rates quite significantly in microchannels containing obstructions.


2011 ◽  
Vol 3 ◽  
pp. 315943 ◽  
Author(s):  
Haifeng Shi ◽  
Yi Wang ◽  
Wu Ge ◽  
Bo Fang ◽  
Jacob T. Huggins ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document