Advanced direct-water-cool power module having pinfin heatsink with low pressure drop and high heat transfer

Author(s):  
Keisuke Horiuchi ◽  
Atsuo Nishihara ◽  
Mutsuhiro Mori ◽  
Toshiki Kurosu
Author(s):  
Ankit Kalani ◽  
Satish G. Kandlikar

Heat dissipation beyond 1 kW/cm2 accompanied with high heat transfer coefficient and low pressure drop using water has been a long-standing goal in the flow boiling research directed toward electronic cooling application. In the present work, three approaches are combined to reach this goal: (a) a microchannel with a manifold to increase critical heat flux (CHF) and heat transfer coefficient (HTC), (b) a tapered manifold to reduce the pressure drop, and (c) high flow rates for further enhancing CHF from liquid inertia forces. A CHF of 1.07 kW/cm2 was achieved with a heat transfer coefficient of 295 kW/m2°C with a pressure drop of 30 kPa. Effect of flow rate on CHF and HTC is investigated. High speed visualization to understand the underlying bubble dynamics responsible for low pressure drop and high CHF is also presented.


2004 ◽  
Vol 126 (4) ◽  
pp. 528-534 ◽  
Author(s):  
S. B. Sathe ◽  
B. G. Sammakia

The results of a study of a new and unique high-performance air-cooled impingement heat sink are presented. An extensive numerical investigation of the heat sink performance is conducted and is verified by experimental data. The study is relevant to cooling of high-power chips and modules in air-cooled environments and applies to workstations or mainframes. In the study, a rectangular jet impinges on a set of parallel fins and then turns into cross flow. The effects of the fin thickness, gap nozzle width and fin shape on the heat transfer and pressure drop are investigated. It is found that pressure drop is reduced by cutting the fins in the central impingement zone without sacrificing the heat transfer due to a reduction in the extent of the stagnant zone. A combination of fin thicknesses of the order of 0.5 mm and channel gaps of 0.8 mm with appropriate central cutout yielded heat transfer coefficients over 1500 W/m2 K at a pressure drop of less than 100 N/m2, as is typically available in high-end workstations. A detailed study of flow-through heat sinks subject to the same constraints as the impingement heat sink showed that the flow-through heat sink could not achieve the high heat transfer coefficients at a low pressure drop.


2013 ◽  
Vol 709 ◽  
pp. 286-291 ◽  
Author(s):  
Li Feng Wang ◽  
Bao Dong Shao ◽  
He Ming Cheng

The purpose of this paper is to optimize the structural sizes of multi-layer rectangle micro-channel heat sink, which has been widely used to cool electronic chip for its high heat transfer coefficient and compact structure. Taking the thermal resistance and the pressure drop as goal functions, a binary-objective optimization model was proposed for the multi-layer rectangle micro-channel heat sink based on Sequential Quadratic Programming (SQP) method. The number of optimized micro-channel in width n1 and that in height n2 are 21 and 7, the width of optimized micro-channel Wc and fin Wf are 340 and 130μm, the height of optimized micro-channel Hc is 415μm, and the corresponding total thermal resistance of the whole micro-channel heat sink is 1.3354 °C/W. The corresponding pressure drop is about 1.3377 Pa. When the velocity of liquid is larger than 0.3 m/s, the effect of change of velocity of liquid on the thermal resistance and pressure drop can be neglected.


1985 ◽  
Vol 107 (1) ◽  
pp. 205-213 ◽  
Author(s):  
P. W. Eckels ◽  
T. J. Rabas

The heat transfer and pressure drop performance of two types of finned tubes used in the air-conditioning industry are reported for 14 different bundle configurations. Twelve of these configurations contained a new type of finned tube called K-Y and two contained a more conventional pin fin. A unique characteristic of all these configurations is zero or negative fin-tip clearances. A comparison of the performance of these air-conditioning type finned tubes with negative fin-tip clearance is then made with the performance of typical air-cooled heat exchanger tubes used in the process and power industries. Both the heat transferred and the pressure drop are substantially higher with the air-conditioning configurations; the heat transfer coefficient is superior even to plain tubes. The very high heat transfer performance is more the result of the negative fin-tip clearance than the fin shape or type.


Author(s):  
S. B. Sathe ◽  
B. G. Sammakia

The results of a study of a new and unique high performance air-cooled impingement heat sink are presented. An extensive numerical investigation of the heat sink performance is conducted and is verified by experimental data. The study is relevant to cooling of high power chips and modules in air-cooled environments and applies to workstations or mainframes. In the study, a rectangular jet impinges on a set of parallel fins and then turns into cross-flow. The effects of the fin thickness and gap nozzle width and fin shape on the heat transfer and pressure drop are investigated. It is found that pressure drop is reduced by cutting the fins in the central impingement zone without sacrificing the heat transfer due to a reduction in the extent of the stagnant zone. A combination of fin thicknesses of the order of 0.5 mm and channel-gaps of 0.8 mm with appropriate central cut-out yielded heat transfer coefficients over 1500 W/m2K at a pressure drop of less than 100 N/m2, as is typically available in high-end workstations. A detailed study of flow-through heat sinks, subject to the same constraints as the impingement heat sink showed that the flow-through heat sink could not achieve the high heat transfer coefficients at a low pressure drop.


2018 ◽  
Vol 924 ◽  
pp. 866-870
Author(s):  
Brandon Passmore ◽  
Brice McPherson ◽  
David Simco ◽  
Alex Lostetter

This paper discusses Wolfspeed’s advances in silicon carbide (SiC) power module packaging, focusing on recent developments in advanced power module heat transfer techniques, the integration of pinfin mechanical structures, and the implementation of advanced die attach materials. Heat spreader materials and novel cooling methods suitable for SiC power modules are presented, focusing on the thermal heat transfer properties and a discussion of the design and prototype experimental impacts.


Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 403 ◽  
Author(s):  
Binghuan Huang ◽  
Haiwang Li ◽  
Tiantong Xu

The application of microchannel heat exchangers is of great significance in industrial fields due to their advantages of miniaturized scale, large surface-area-to-volume ratio, and high heat transfer rate. In this study, microchannel heat exchangers with and without fan-shaped reentrant cavities were designed and manufactured, and experiments were conducted to investigate the flow and heat-transfer characteristics. The impact rising from the radius of reentrant cavities, as well as the Reynolds number on the heat transfer and the pressure drop, is also analyzed. The results indicate that, compared with straight microchannels, microchannels with reentrant cavities could enhance the heat transfer and, more importantly, reduce the pressure drop at the same time. For the ranges of parameters studied, increasing the radius of reentrant cavities could augment the effect of pressure-drop reduction, while the corresponding variation of heat transfer is complicated. It is considered that adding reentrant cavities in microchannel heat exchangers is an ideal approach to improve performance.


Author(s):  
Li Yang ◽  
Weihong Li ◽  
Zhongran Chi ◽  
Jing Ren ◽  
Hongde Jiang

Impingement cooling is widely used in turbine vanes and combustors. With the increase of turbine inlet temperature, high heat transfer coefficient and low pressure drop are required for cooling structures. A series of new impingement configurations combined with corrugated orifice and pin-fins were developed in the present work. Both transient liquid crystal (TLC) and pressure measurement were applied on the impingement cooling structures. A 3D numerical method was also used for conjugate heat transfer simulation. Corrugated orifice helps decrease the pressure drop by decreasing the speed of cross flow. Experimental data show that, corrugated orifice is helpful in reducing pin-fin induced pressure drop but contributes little to heat transfer. Pin-fins increases both the heat transfer and pressure drop lightly. Conjugate heat transfer simulation shows that pin-fins significantly reduce the metal temperature by conduction. Structures with pin-fins can make a good use of the large surface area of corrugated orifices.


Author(s):  
G. Sashwin Nair ◽  
Ahmed N. Oumer ◽  
Azizuddin Abd Aziz ◽  
Januar Parlaungan Siregar

Compact heat exchangers (CHEs) are one of the most commonly used heat exchangers in the industry due to their superior advantages over other types of heat exchangers. Various geometric (fin spacing, tube inclination angle, etc) and process (such as flow velocity, temperature, etc) parameters affect the performance of such compact HEs. This research aims to examine the effects of fin spacing, tube inclination angle, and airflow velocity on heat transfer and pressure drop performance of CHE in both inline and staggered configurations. A three-dimensional (3D) numerical method with the aid of Ansys FLUENT software was carried out for the laminar flow condition. Based on the obtained results, the highest average heat transfer coefficient was observed at 120° for both tube arrangements while the lowest average pressure drop penalty is at 30°. Therefore, the recommended inclination angle when high heat transfer is needed is at 120° while if the pumping power is the major problem, 30 °or 150° is recommended. based on the London area goodness factor (j/f), 30° and 150° show the highest value for both configurations. The j/f factor decreases with the increase of Reynolds number for both configurations. In addition, 120° shows the lowest j/f which can be due to the high pressure drop.


Sign in / Sign up

Export Citation Format

Share Document