DEM simulation of wave propagation in granular materials

2000 ◽  
Vol 109 (1-3) ◽  
pp. 222-233 ◽  
Author(s):  
Martin H. Sadd ◽  
Gautam Adhikari ◽  
Francisco Cardoso
2018 ◽  
Vol 183 ◽  
pp. 01054
Author(s):  
Elisha Rejovitzky

The design of protective structures often requires numerical modeling of shock-wave propagation in the surrounding soils. Properties of the soil such as grain-grading and water-fraction may vary spatially around a structure and among different sites. To better understand how these properties affect wave propagation we study how the meso-structure of soils affects their equation of state (EOS). In this work we present a meso-mechanical model for granular materials based on a simple representation of the grains as solid spheres. Grain-grading is prescribed, and a packing algorithm is used to obtain periodic grain morphologies of tightly packed randomly distributed spheres. The model is calibrated by using experimental data of sand compaction and sound-speed measurements from the literature. We study the effects of graingrading and show that the pressures at low strains exhibit high sensitivity to the level of connectivity between grains. At high strains, the EOS of the bulk material of the grains dominates the behavior of the EOS of the granular material.


2012 ◽  
Vol 170-173 ◽  
pp. 3361-3366
Author(s):  
Zhao Xia Tong ◽  
Min Zhou ◽  
Yang Ping Yao

Series of biaxial compression simulations are carried out to investigate the effects of boundary condition on the deformation of granular materials by using DEM. The parameters used in DEM are validated by the biaxial compression experiments on elliptical steel bars. The effects of boundary condition on the stress-strain relationship are analyzed. And special focus are put in the analysis of particle displacement, particle rotation, void distribution, particle long axis orientation and contact force with the development of deformation.


2003 ◽  
Vol 2003 (0) ◽  
pp. 186
Author(s):  
Shusaku HARADA ◽  
Shu TAKAGI ◽  
Yoichiro MATSUMOTO

Meccanica ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 341-357 ◽  
Author(s):  
Pasquale Giovine ◽  
Francesco Oliveri

2021 ◽  
Author(s):  
Jiangtao Lei ◽  
◽  
Marcos Arroyo ◽  
Matteo Ciantia ◽  
Ningning Zhang ◽  
...  

A recently proposed DEM model for materials with rough crushable grains (Zhang et al. 2021; Ciantia et al. 2015; Otsubo et al. 2017) is here employed to examine the effect of contact roughness on the critical state line, a property of granular materials which is a) fundamental for the evaluation of liquefaction risk and liquefied responses and b) easily accessible through DEM simulation (Ciantia et al. 2019).


Sign in / Sign up

Export Citation Format

Share Document