scholarly journals Sign of refractive index and group velocity in left-handed media

2002 ◽  
Vol 124 (8) ◽  
pp. 283-287 ◽  
Author(s):  
A.L. Pokrovsky ◽  
A.L. Efros
2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
A. I. Ass'ad ◽  
H. S. Ashour

Nonlinear magnetostatic surface wave in a slab waveguide structure has been investigated. The design consisted of dielectric film between two thick nonlinear nonmagnetic negative permittivity material (NPM) layers. A dispersion relation for TE nonlinear Magnetostatic surface waves (NMSSWs) has been derived into the proposed structure and has been numerically investigated. Effective refractive index decreases with thickness and frequency increase have been found. Effective refractive index decrease with optical nonlinearity increase and switching to negative values of effective refractive index at a certain value of optical nonlinearity have been found. This meant that the structure behaved like a left-handed material over certain range. We found that the power flow was changing by changing the operating frequency, the dielectric film thickness, and the optical nonlinearity. Also, the effective refractive index and power flow attained constant values over certain values of dielectric constant values.


2007 ◽  
Vol 244 (4) ◽  
pp. 1219-1226 ◽  
Author(s):  
Christophe Caloz ◽  
Samer Abielmona ◽  
Hoang Van Nguyen ◽  
Andre Rennings

2013 ◽  
Vol 816-817 ◽  
pp. 242-245
Author(s):  
Xiang An Yan ◽  
Li Qiang Wang

We propose a scheme for realizing negative refractive index in a multilevel atomic system. The theoretical modeling has been done using density matrix approach in which the spontaneously generated coherence (SGC) is also induced. It is shown that the negative refractive index can be obtained on the effect of quantum coherence. The parameters () quantifying left-handedness in the system become more negative if the SGC is defined in the appropriate value. Furthermore, left-handed material with reduced absorption is possible by choosing appropriate parameters.


2007 ◽  
Vol 39 (2) ◽  
pp. 185-191 ◽  
Author(s):  
N. Dalarsson ◽  
M. Maksimovic ◽  
Z. Jaksic

We investigated the spectral properties of a new class of nanostructured artificial composite materials with tailored electromagnetic response, i.e. negative refractive index materials, also known as "left-handed" metamaterials. We analyzed structures incorporating both ordinary positive index media and negative refractive index metamaterials where the interface may be graded to an arbitrary degree. Utilizing a modified version of the Rosen-Morse function, we derived analytical expressions for the field intensity and spectral reflection and transmission through a graded interface between positive and negative index materials. We compared our results to numerical solutions obtained using the transfer matrix technique. .


Sign in / Sign up

Export Citation Format

Share Document