Power conversion efficiency studies of vacuum evaporated n-CdSe0.6Te0.4 semiconducting thin film/(aq) ferro-ferricyanide electrolyte photoelectrochemical solar cells

1997 ◽  
Vol 103 (3) ◽  
pp. 173-178 ◽  
Author(s):  
V. Damodara Das ◽  
Laxmikant Damodare
2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Chog Barugkin ◽  
Ulrich W. Paetzold ◽  
Kylie R. Catchpole ◽  
Angelika Basch ◽  
Reinhard Carius

We report on the prototyping and development of a highly reflective dielectric back reflector for application in thin-film solar cells. The back reflector is fabricated by Snow Globe Coating (SGC), an innovative, simple, and cheap process to deposit a uniform layer of TiO2particles which shows remarkably high reflectance over a broad spectrum (average reflectance of 99% from 500 nm to 1100 nm). We apply the highly reflective back reflector to tandem thin-film silicon solar cells and compare its performance with conventional ZnO:Al/Ag reflector. By using SGC back reflector, an enhancement of 0.5 mA/cm2in external quantum efficiency of the bottom solar cell and an absolute value of 0.2% enhancement in overall power conversion efficiency are achieved. We also show that the increase in power conversion efficiency is due to the reduction of parasitic absorption at the back contact; that is, the use of the dielectric reflector avoids plasmonic losses at the reference ZnO:Al/Ag back reflector. The Snow Globe Coating process is compatible with other types of solar cells such as crystalline silicon, III–V, and organic photovoltaics. Due to its cost effectiveness, stability, and excellent reflectivity above a wavelength of 400 nm, it has high potential to be applied in industry.


2020 ◽  
Author(s):  
Long Hu ◽  
Qian Zhao ◽  
Shujuan Huang ◽  
Jianghui Zheng ◽  
Xinwei Guan ◽  
...  

Abstract All-inorganic CsPbI3 perovskite quantum dots (QDs) have received intense research interest for photovoltaic applications because of the recently demonstrated higher power conversion efficiency compared to solar cells using other QD materials. These QD devices also exhibit good mechanical stability amongst various thin-film photovoltaic technologies. In this work, through developing a hybrid interfacial architecture consisting of CsPbI3 QD/PCBM heterojunctions, we report the formation of an energy cascade for efficient charge transfer at both QD heterointerfaces and QD/electron transport layer interfaces. The champion CsPbI3 QD solar cell has a best power conversion efficiency of 15.1%, which is among the highest report to date. Building on this strategy, we demonstrate the very first perovskite QD flexible solar cell with a record efficiency of 12.3%. A detailed morphological characterization reveals that the perovskite QD film can better retain structure integrity than perovskite bulk thin-film under external mechanical stress. This work is the first to demonstrate higher mechanical endurance of QD film compared to bulk thin-film, and highlights the importance of further research on high‐performance and flexible optoelectronic devices using solution-processed QDs.


2008 ◽  
Vol 516 (14) ◽  
pp. 4613-4619 ◽  
Author(s):  
Seigo Ito ◽  
Takurou N. Murakami ◽  
Pascal Comte ◽  
Paul Liska ◽  
Carole Grätzel ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (91) ◽  
pp. 74263-74269 ◽  
Author(s):  
Zhaolai Chen ◽  
Qingsen Zeng ◽  
Fangyuan Liu ◽  
Gan Jin ◽  
Xiaohang Du ◽  
...  

Efficient inorganic thin-film solar cells are fabricated from aqueous CdTe nanocrystals and a power conversion efficiency of 5.73% is achieved. Annealing-induced variation of material composition and charge dynamics are investigated in detail.


2016 ◽  
Vol 4 (19) ◽  
pp. 7390-7397 ◽  
Author(s):  
Xin Zhao ◽  
Mingxuan Lu ◽  
Mark J. Koeper ◽  
Rakesh Agrawal

A monoamine–dithiol mixture is used to prepare homogeneous Cu(In, Ga)Se2 (CIGSe) molecular precursor solution, which yields a highly sulfur depleted CIGSe thin-film solar cell with a power conversion efficiency of 12.2%.


Sign in / Sign up

Export Citation Format

Share Document