Solution-processed sulfur depleted Cu(In, Ga)Se2 solar cells synthesized from a monoamine–dithiol solvent mixture

2016 ◽  
Vol 4 (19) ◽  
pp. 7390-7397 ◽  
Author(s):  
Xin Zhao ◽  
Mingxuan Lu ◽  
Mark J. Koeper ◽  
Rakesh Agrawal

A monoamine–dithiol mixture is used to prepare homogeneous Cu(In, Ga)Se2 (CIGSe) molecular precursor solution, which yields a highly sulfur depleted CIGSe thin-film solar cell with a power conversion efficiency of 12.2%.

2011 ◽  
Vol 21 (1) ◽  
pp. 72-76 ◽  
Author(s):  
Byungha Shin ◽  
Oki Gunawan ◽  
Yu Zhu ◽  
Nestor A. Bojarczuk ◽  
S. Jay Chey ◽  
...  

2013 ◽  
Vol 22 (1) ◽  
pp. 58-68 ◽  
Author(s):  
Lian Guo ◽  
Yu Zhu ◽  
Oki Gunawan ◽  
Tayfun Gokmen ◽  
Vaughn R. Deline ◽  
...  

2020 ◽  
Author(s):  
Long Hu ◽  
Qian Zhao ◽  
Shujuan Huang ◽  
Jianghui Zheng ◽  
Xinwei Guan ◽  
...  

Abstract All-inorganic CsPbI3 perovskite quantum dots (QDs) have received intense research interest for photovoltaic applications because of the recently demonstrated higher power conversion efficiency compared to solar cells using other QD materials. These QD devices also exhibit good mechanical stability amongst various thin-film photovoltaic technologies. In this work, through developing a hybrid interfacial architecture consisting of CsPbI3 QD/PCBM heterojunctions, we report the formation of an energy cascade for efficient charge transfer at both QD heterointerfaces and QD/electron transport layer interfaces. The champion CsPbI3 QD solar cell has a best power conversion efficiency of 15.1%, which is among the highest report to date. Building on this strategy, we demonstrate the very first perovskite QD flexible solar cell with a record efficiency of 12.3%. A detailed morphological characterization reveals that the perovskite QD film can better retain structure integrity than perovskite bulk thin-film under external mechanical stress. This work is the first to demonstrate higher mechanical endurance of QD film compared to bulk thin-film, and highlights the importance of further research on high‐performance and flexible optoelectronic devices using solution-processed QDs.


2021 ◽  
Vol 01 (01) ◽  
pp. 56-57
Author(s):  
Galhenage A. Sewvandi ◽  
◽  
J.T.S.T. Jayawardane ◽  

Solar energy is a commonly used alternate source of energy and it can be utilized based on the principle of the photovoltaic effect. The photovoltaic effect converts sun energy into electrical energy using photovoltaic devices (solar cells). A solar cell device should have high efficiency and a long lifetime to be commercially beneficial. Presently, silicon and thin-film solar cells are widely employed. The crystalline solar cells are more efficient but they are also expensive. Thin-film solar cells are formed by placing one or more thin layers of photovoltaic materials on different substrates. Although these cells have a lower cost, they are also less efficient compared to Si-based solar cells. Organic-inorganic hybrid lead halide perovskite solar cells are one of the most promising low-cost power conversion efficiency technologies that could exceed the 26% threshold. However, the lack of environmental stability and of high lead toxicity are the main bottlenecks that impede the future industrialization and commercialization hybrid lead halide perovskite. Hence It is important to achieve high power conversion efficiency while also maintaining stability and non-toxicity in the development of new lead-free perovskite materials.


2017 ◽  
Vol 701 ◽  
pp. 901-908 ◽  
Author(s):  
Mingrui He ◽  
A.C. Lokhande ◽  
In Young Kim ◽  
U.V. Ghorpade ◽  
M.P. Suryawanshi ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Wageh ◽  
Mahfoudh Raïssi ◽  
Thomas Berthelot ◽  
Matthieu Laurent ◽  
Didier Rousseau ◽  
...  

AbstractPoly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) mixed with single-wall nanotubes (SWNTs) (10:1) and doped with (0.1 M) perchloric acid (HClO4) in a solution-processed film, working as an excellent thin transparent conducting film (TCF) in organic solar cells, was investigated. This new electrode structure can be an outstanding substitute for conventional indium tin oxide (ITO) for applications in flexible solar cells due to the potential of attaining high transparency with enhanced conductivity, good flexibility, and good durability via a low-cost process over a large area. In addition, solution-processed vanadium oxide (VOx) doped with a small amount of PEDOT-PSS(PH1000) can be applied as a hole transport layer (HTL) for achieving high efficiency and stability. From these viewpoints, we investigate the benefit of using printed SWNTs-PEDOT-PSS doped with HClO4 as a transparent conducting electrode in a flexible organic solar cell. Additionally, we applied a VOx-PEDOT-PSS thin film as a hole transporting layer and a blend of PTB7 (polythieno[3,4-b] thiophene/benzodithiophene): PC71BM (phenyl-C71-butyric acid methyl ester) as an active layer in devices. Zinc oxide (ZnO) nanoparticles were applied as an electron transport layer and Ag was used as the top electrode. The proposed solar cell structure showed an enhancement in short-circuit current, power conversion efficiency, and stability relative to a conventional cell based on ITO. This result suggests a great carrier injection throughout the interfacial layer, high conductivity and transparency, as well as firm adherence for the new electrode.


2015 ◽  
Vol 19 (01-03) ◽  
pp. 175-191 ◽  
Author(s):  
Ganesh D. Sharma ◽  
Galateia E. Zervaki ◽  
Kalliopi Ladomenou ◽  
Emmanuel N. Koukaras ◽  
Panagiotis P. Angaridis ◽  
...  

Two porphyrin dyads with the donor-π-acceptor molecular architecture, namely ( ZnP )-[triazine-gly]-( H 2 PCOOH ) and ( ZnP )-[triazine-Npip]-( H 2 PCOOH ), which consist of a zinc-metalated porphyrin unit and a free-base porphyrin unit covalently linked at their peripheries to a central triazine group, substituted either by a glycine in the former or a N-piperidine group in the latter, have been synthesized via consecutive amination substitution reactions of cyanuric chloride. The UV-vis absorption spectra and cyclic-voltammetry measurements of the two dyads, as well as theoretical calculations based on Density Functional Theory, suggest that they have suitable frontier orbital energy levels for use as sensitizers in dye-sensitized solar cells. Dye-sensitized solar cells based on ( ZnP )-[triazine-gly]-( H 2 PCOOH ) and ( ZnP )-[triazine-Npip]-( H 2 PCOOH ) have been fabricated, and they were found to exhibit power conversion efficiency values of 5.44 and 4.15%, respectively. Photovoltaic measurements (J–V curves) and incident photon to current conversion efficiency spectra of the two solar cells suggest that the higher power conversion efficiency value of the former solar cell is a result of its enhanced short circuit current, open circuit voltage, and fill factor values, as well as higher dye loading. This is ascribed to the existence of two carboxylic acid anchoring groups in ( ZnP )-[triazine-gly]-( H 2 PCOOH ), compared to one carboxylic acid group in ( ZnP )-[triazine-Npip]-( H 2 PCOOH ), which leads to a more effective binding onto the TiO 2 photoanode. Electrochemical impedance spectra show evidence that the ( ZnP )-[triazine-gly]-( H 2 PCOOH ) based solar cell exhibits a longer electron lifetime and more effective suppression of charge recombination reactions between the injected electrons and electrolyte.


2022 ◽  
Author(s):  
Ehsan Elahi ◽  
Ghulam Dastgeer ◽  
Abdul Subhan Siddiqui ◽  
Supriya A. Patil ◽  
Muhammad Waqas Iqbal ◽  
...  

With perovskite materials, rapid progress in power conversion efficiency (PCE) to reach 25% has gained a significant amount of attention from the solar cell industry.


RSC Advances ◽  
2019 ◽  
Vol 9 (36) ◽  
pp. 20670-20676 ◽  
Author(s):  
Ju Hwan Kang ◽  
Yu Jung Park ◽  
Myung Joo Cha ◽  
Yeonjin Yi ◽  
Aeran Song ◽  
...  

Non-conjugated polyelectrolytes are empolyed as interfacial layers at the electrodes of solar cells and transistor devices to improve the power conversion efficiency (PCE) and device performance.


Sign in / Sign up

Export Citation Format

Share Document