Inhibition of the transcription factor nuclear factor-κB by adenoviral-mediated expression of IκBαM results in tumor cell death

Surgery ◽  
1999 ◽  
Vol 126 (2) ◽  
pp. 399-405 ◽  
Author(s):  
Barry W. Feig ◽  
Xiaolin Lu ◽  
Kelly K. Hunt ◽  
Qin Shan ◽  
Dihua Yu ◽  
...  
Endocrinology ◽  
2009 ◽  
Vol 150 (9) ◽  
pp. 4094-4103 ◽  
Author(s):  
Morten F. Tonnesen ◽  
Lars G. Grunnet ◽  
Josefine Friberg ◽  
Alessandra K. Cardozo ◽  
Nils Billestrup ◽  
...  

Abstract Accumulating evidence suggests that endoplasmic reticulum (ER) stress by mechanisms that include ER Ca2+ depletion via NO-dependent down-regulation of sarcoendoplasmic reticulum Ca2+ ATPase 2b (SERCA2b) contributes to β-cell death in type 1 diabetes. To clarify whether the molecular pathways elicited by NO and ER Ca2+ depletion differ, we here compare the direct effects of NO, in the form of the NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP), with the effects of SERCA2 inhibitor thapsigargin (TG) on MAPK, nuclear factor κB (NFκB), Bcl-2 proteins, ER stress, and apoptosis. Exposure of INS-1E cells to TG or SNAP caused caspase-3 cleavage and apoptosis. Both TG and SNAP induced activation of the proapoptotic transcription factor CCAAT/enhancer-binding protein homologous protein (CHOP). However, other classical ER stress-induced markers such as up-regulation of ER chaperone Bip and alternative splicing of the transcription factor Xbp-1 were exclusively activated by TG. TG exposure caused NFκB activation, as assessed by IκB degradation and NFκB DNA binding. Inhibition of NFκB or the Bcl-2 family member Bax pathways protected β-cells against TG- but not SNAP-induced β-cell death. These data suggest that NO generation and direct SERCA2 inhibition cause two quantitative and qualitative different forms of ER stress. In contrast to NO, direct ER stress induced by SERCA inhibition causes activation of ER stress signaling pathways and elicit proapoptotic signaling via NFκB and Bax.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Christoph Küper ◽  
Franz-X. Beck ◽  
Wolfgang Neuhofer

Increased expression of the C-C chemokine monocyte chemoattractant protein-1 (MCP-1) in mesothelial cells in response to high glucose concentrations and/or high osmolality plays a crucial role in the development of peritoneal fibrosis during continuous ambulatory peritoneal dialysis (CAPD). Recent studies suggest that in kidney cells osmolality-induced MCP-1 upregulation is mediated by the osmosensitive transcription factor, nuclear factor of activated T cells 5 (NFAT5). The present study addressed the question of whether activation of NFAT5 by hyperosmolality, as present in PD fluids, contributes to MCP-1 expression in the mesothelial cell line Met5A. Hyperosmolality, induced by addition of glucose, NaCl, or mannitol to the growth medium, increased NFAT5 activity and stimulated MCP-1 expression in Met5A cells. siRNA-mediated knockdown of NFAT5 attenuated osmolality-induced MCP-1 upregulation substantially. Hyperosmolality also induced activation of nuclear factor-κB (NF-κB). Accordingly, pharmacological inhibition of NF-κB significantly decreased osmolality-induced MCP-1 expression. Taken together, these results indicate that high osmolalities activate the transcription factor NFAT5 in mesothelial cells. NFAT5 in turn upregulates MCP-1, likely in combination with NF-κB, and thus may participate in the development of peritoneal fibrosis during CAPD.


2005 ◽  
Vol 76 (7) ◽  
pp. 1148-1153 ◽  
Author(s):  
R. Ambili ◽  
W.S. Santhi ◽  
Prasanthila Janam ◽  
K. Nandakumar ◽  
M. Radhakrishna Pillai

1996 ◽  
Vol 39 (4) ◽  
pp. 583-591 ◽  
Author(s):  
R. Marok ◽  
P. G. Winyard ◽  
A. Coumbe ◽  
M. L. Kus ◽  
K. Gaffney ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document