mesothelial cell
Recently Published Documents


TOTAL DOCUMENTS

429
(FIVE YEARS 71)

H-INDEX

43
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Ramakanth Chirravuri-Venkata

The paradox in the pathobiological processes driving the incidence and progression across carcinomas unveil new opportunities for effective cancer treatment. The scattered evidence across the literature indicates that the insufficiencies/alterations in mesothelial cell migration, development, or function dramatically change the clinical disease course. We succinctly report in-general phenomena extensible across carcinomas predisposing to desmoplasia/reactive stroma, with due understanding of the limitations associated with such broader extrapolation. We further highlight the need for a comprehensive understanding of these purported pathways with an emphasis towards determining the tradeoffs between the risks associated with cancer susceptibility and disease progression.


2021 ◽  
Vol 2 (1) ◽  
pp. 15-20
Author(s):  
Eclair Lucas Filho ◽  
Fernando Fernandes Rodrigues ◽  
Natalia Verzeletti Oliveira

Cysts found in splenic stores, of parasitic or non-parasitic origin, are rare causes of recurrent abdominal pain, but with a significant increase in the number of diagnoses in recent years. This condition is caused by the derivation of the mesothelial cell lining of the spleen capsule, occurring in 0.5 - 2% of the world population. Clinically, patients tend to remain asymptomatic for years and usually have an incidental diagnosis by imaging exams or during the investigation of diffuse and recurrent abdominal pain, rarely found in females. The treatment of splenic cysts is performed through video laparoscopic splenic resection.


2021 ◽  
Vol 17 (6) ◽  
pp. 49-55
Author(s):  
K. V. Dergilev ◽  
Z. I. Tsokolayeva ◽  
I. B. Beloglazova ◽  
Yu. D. Vasilets ◽  
D. O. Traktuyev ◽  
...  

The study of the mechanisms of development and progression of fibrosis is one of the key directions of modern cardiology. Our work suggests that the urokinase receptor (uPAR) is involved in the regulation of mesothelial cell activity and epicardial fibrosis development, which, when interacting with specific ligands and intermediate proteins, can activate intracellular signaling, trigger the cascade of proteolytic reactions, including local plasmin formation and activation of matrix metalloproteinases, providing matrix remodeling.Objective: to perform a comparative study of fibrogenic activity of the epicardium in the hearts of uPAR-/- and wild-type animals and evaluate the effect of cardiac microenvironment factors on the migration activity of epicardial mesothelial cells.Material and methods. We used histological and immunofluorescent staining, microarray analysis of proinflammatory cytokine levels, and a method for assessing the migratory properties of epicardial cells.Results. Results. We found that compared to wild-type animals, uPAR-/- animals show significant thickening of the epicardial area (2.46+0.77 (uPAR-/- mice) and 1.02+0.17 (Wt mice) relative units, P=0.033) accompanied by accumulation of extracellular matrix proteins. Deficiency of uPAR gene leads to formation of proinflammatory microenvironment in the heart (increased levels of proinflammatory factors such as IL-1, IL-13, IL-17, RANTES and MIP1), increased migratory activity of epicardial mesothelial cells, accumulation of TCF21+fibroblast/myofibroblast precursors (29.8+13.7 (uPAR-/- mouse) and 3.03+0.8 (Wt mouse) cells per visual field,P=0.02), as well as development of subepicardial fibrosis.Conclusion. These findings suggest that uPAR is a promising candidate for the developing targeted agents to prevent the development and progression of cardiac fibrosis.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Meng Tian ◽  
Yingjie Tang ◽  
Ting Huang ◽  
Yang Liu ◽  
Yingzheng Pan

Abstract Background Ovarian cancer is a devastating gynecological malignancy and frequently presents as an advanced carcinoma with disseminated peritoneum metastasis. Acacetin exerts anti-cancerous effects in several carcinomas. Here, we sought to investigate acacetin function in ovarian cancer malignancy triggered by peritoneal mesothelial cells. Methods Peritoneal mesothelial cells were treated with acacetin, and then the conditioned medium was collected to treat ovarian cancer cells. Then, cell proliferation was analyzed by MTT assay. Transwell analysis was conducted to evaluate cell invasion. Protein expression was determined by western blotting. ELISA and qRT-PCR were applied to analyze inflammatory cytokine levels. The underlying mechanism was also explored. Results Acacetin suppressed cell proliferation and invasion, but enhanced cell apoptosis. Furthermore, mesothelial cell-evoked malignant characteristics were inhibited when mesothelial cells were pre-treated with acacetin via restraining cell proliferation and invasion, concomitant with decreases in proliferation-related PCNA, MMP-2 and MMP-9 levels. Simultaneously, acacetin reduced mesothelial cell-induced transcripts and production of pro-inflammatory cytokine IL-6 and IL-8 in ovarian cancer cells. Mechanically, acacetin decreased lysophosphatidic acid (LPA) release from mesothelial cells, and subsequent activation of receptor for advanced glycation end-products (RAGE)-PI3K/AKT signaling in ovarian cancer cells. Notably, exogenous LPA restored the above pathway, and offset the efficacy of acacetin against mesothelial cell-evoked malignancy in ovarian cancer cells, including cell proliferation, invasion and inflammatory cytokine production. Conclusions Acacetin may not only engender direct inhibition of ovarian cancer cell malignancy, but also antagonize mesothelial cell-evoked malignancy by blocking LPA release-activated RAGE-PI3K/AKT signaling. Thus, these findings provide supporting evidence for a promising therapeutic agent against ovarian cancer. Graphical Abstract


2021 ◽  
Vol 118 (48) ◽  
pp. e2111946118
Author(s):  
Flavia Novelli ◽  
Angela Bononi ◽  
Qian Wang ◽  
Fang Bai ◽  
Simone Patergnani ◽  
...  

Carriers of heterozygous germline BAP1 mutations (BAP1+/−) are affected by the “BAP1 cancer syndrome.” Although they can develop almost any cancer type, they are unusually susceptible to asbestos carcinogenesis and mesothelioma. Here we investigate why among all carcinogens, BAP1 mutations cooperate with asbestos. Asbestos carcinogenesis and mesothelioma have been linked to a chronic inflammatory process promoted by the extracellular release of the high-mobility group box 1 protein (HMGB1). We report that BAP1+/− cells secrete increased amounts of HMGB1, and that BAP1+/− carriers have detectable serum levels of acetylated HMGB1 that further increase when they develop mesothelioma. We linked these findings to our discovery that BAP1 forms a trimeric protein complex with HMGB1 and with histone deacetylase 1 (HDAC1) that modulates HMGB1 acetylation and its release. Reduced BAP1 levels caused increased ubiquitylation and degradation of HDAC1, leading to increased acetylation of HMGB1 and its active secretion that in turn promoted mesothelial cell transformation.


2021 ◽  
Vol 22 (22) ◽  
pp. 12443
Author(s):  
Tyvette S. Hilliard ◽  
Brooke Kowalski ◽  
Kyle Iwamoto ◽  
Elizabeth A. Agadi ◽  
Yueying Liu ◽  
...  

Mesothelin (MSLN), a glycoprotein normally expressed by mesothelial cells, is overexpressed in ovarian cancer (OvCa) suggesting a role in tumor progression, although the biological function is not fully understood. OvCa has a high mortality rate due to diagnosis at advanced stage disease with intraperitoneal metastasis. Tumor cells detach from the primary tumor as single cells or multicellular aggregates (MCAs) and attach to the mesothelium of organs within the peritoneal cavity producing widely disseminated secondary lesions. To investigate the role of host MSLN in the peritoneal cavity we used a mouse model with a null mutation in the MSLN gene (MSLNKO). The deletion of host MSLN expression modified the peritoneal ultrastructure resulting in abnormal mesothelial cell surface architecture and altered omental collagen fibril organization. Co-culture of murine OvCa cells with primary mesothelial cells regardless of MSLN expression formed compact MCAs. However, co-culture with MSLNKO mesothelial cells resulted in smaller MCAs. An allograft tumor study, using wild-type mice (MSLNWT) or MSLNKO mice injected intraperitoneally with murine OvCa cells demonstrated a significant decrease in peritoneal metastatic tumor burden in MSLNKO mice compared to MSLNWT mice. Together, these data support a role for host MSLN in the progression of OvCa metastasis.


2021 ◽  
Vol 22 (21) ◽  
pp. 11496
Author(s):  
Lucía Pascual-Antón ◽  
Beatriz Cardeñes ◽  
Ricardo Sainz de la Cuesta ◽  
Lucía González-Cortijo ◽  
Manuel López-Cabrera ◽  
...  

Most patients with ovarian cancer (OvCA) present peritoneal disseminated disease at the time of diagnosis. During peritoneal metastasis, cancer cells detach from the primary tumor and disseminate through the intraperitoneal fluid. The peritoneal mesothelial cell (PMC) monolayer that lines the abdominal cavity is the first barrier encountered by OvCA cells. Subsequent progression of tumors through the peritoneum leads to the accumulation into the peritoneal stroma of a sizeable population of carcinoma-associated fibroblasts (CAFs), which is mainly originated from a mesothelial-to-mesenchymal transition (MMT) process. A common characteristic of OvCA patients is the intraperitoneal accumulation of ascitic fluid, which is composed of cytokines, chemokines, growth factors, miRNAs, and proteins contained in exosomes, as well as tumor and mesothelial suspended cells, among other components that vary in proportion between patients. Exosomes are small extracellular vesicles that have been shown to mediate peritoneal metastasis by educating a pre-metastatic niche, promoting the accumulation of CAFs via MMT, and inducing tumor growth and chemoresistance. This review summarizes and discusses the pivotal role of exosomes and MMT as mediators of OvCA peritoneal colonization and as emerging diagnostic and therapeutic targets.


2021 ◽  
Vol 22 (21) ◽  
pp. 11452
Author(s):  
Pınar Çakılkaya ◽  
Rikke Raagaard Sørensen ◽  
Henrik Jessen Jürgensen ◽  
Oliver Krigslund ◽  
Henrik Gårdsvoll ◽  
...  

Malignant mesothelioma (MM) is a highly aggressive cancer with limited therapeutic options. We have previously shown that the endocytic collagen receptor, uPARAP, is upregulated in certain cancers and can be therapeutically targeted. Public RNA expression data display uPARAP overexpression in MM. Thus, to evaluate its potential use in diagnostics and therapy, we quantified uPARAP expression by immunohistochemical H-score in formalin-fixed paraffin-embedded bioptic/surgical human tissue samples and tissue microarrays. We detected pronounced upregulation of uPARAP in the three main MM subtypes compared to non-malignant reactive mesothelial proliferations, with higher expression in sarcomatoid and biphasic than in epithelioid MM. The upregulation appeared to be independent of patients’ asbestos exposure and unaffected after chemotherapy. Using immunoblotting, we demonstrated high expression of uPARAP in MM cell lines and no expression in a non-malignant mesothelial cell line. Moreover, we showed the specific internalization of an anti-uPARAP monoclonal antibody by the MM cell lines using flow cytometry-based assays and confocal microscopy. Finally, we demonstrated the sensitivity of these cells towards sub-nanomolar concentrations of an antibody-drug conjugate formed with the uPARAP-directed antibody and a potent cytotoxin that led to efficient, uPARAP-specific eradication of the MM cells. Further studies on patient cohorts and functional preclinical models will fully reveal whether uPARAP could be exploited in diagnostics and therapeutic targeting of MM.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tatsuhiro Sato ◽  
Hayao Nakanishi ◽  
Ken Akao ◽  
Maho Okuda ◽  
Satomi Mukai ◽  
...  

Abstract Background Malignant mesothelioma (MM) is a very aggressive tumor that develops from mesothelial cells, mainly due to asbestos exposure. MM is categorized into three major histological subtypes: epithelioid, sarcomatoid, and biphasic, with the biphasic subtype containing both epithelioid and sarcomatoid components. Patients with sarcomatoid mesothelioma usually show a poorer prognosis than those with epithelioid mesothelioma, but it is not clear how these morphological phenotypes are determined or changed during the oncogenic transformation of mesothelial cells. Methods We introduced the E6 and E7 genes of human papillomavirus type 16 and human telomerase reverse transcriptase gene in human peritoneal mesothelial cells and established three morphologically different types of immortalized mesothelial cell lines. Results HOMC-B1 cells exhibited epithelioid morphology, HOMC-A4 cells were fibroblast-like, spindle-shaped, and HOMC-D4 cells had an intermediate morphology, indicating that these three cell lines closely mimicked the histological subtypes of MM. Gene expression profiling revealed increased expression of NOD-like receptor signaling-related genes in HOMC-A4 cells. Notably, the combination treatment of HOMC-D4 cells with TGF-β and IL-1β induced a morphological change from intermediate to sarcomatoid morphology. Conclusions Our established cell lines are useful for elucidating the fundamental mechanisms of mesothelial cell transformation and mesothelial-to-mesenchymal transition.


2021 ◽  
Author(s):  
Surasak Kasetsirikul ◽  
Muhammad J.A. Shiddiky ◽  
Nam-Trung Nguyen

Abstract This paper reports the development of fluorescent-linked immunosorbent paper-based assay for exosome detection. The paper-based device was fabricated with sandwich lamination for easy handling and was coated with exosome-specific antibody as a biosensing platform to detect exosome sample from the cell culture media. This assay employed fluorescent detection which is followed by tagging fluorophore-conjugated detecting antibody on exosome samples. The fluorescent readout was evaluated and quantified from image processing software. This assay can detect high concentration of exosome samples (~ 1010 exosome/mL). However, this assay has encountered various challenges. First, the exosome concentration prepared from cell culture media from cancer-derived ovarian and mesothelial cell lines may be insufficient to reach detectable range. Second, chemical contamination from exosome isolation kits may affect assay sensitivity. Therefore, assay optimization and minimizing chemical contamination are required which could enhance assay specificity and sensitivity.


Sign in / Sign up

Export Citation Format

Share Document