Neotectonics and extension direction of the Southern Kenya Rift, Lake Magadi area

2003 ◽  
Vol 364 (1-2) ◽  
pp. 71-83 ◽  
Author(s):  
Nassima Atmaoui ◽  
Dirk Hollnack
2019 ◽  
Vol 518 ◽  
pp. 97-118 ◽  
Author(s):  
R. Bernhart Owen ◽  
Robin W. Renaut ◽  
Veronica M. Muiruri ◽  
Nathan M. Rabideaux ◽  
Tim K. Lowenstein ◽  
...  

2001 ◽  
Vol 146 (2) ◽  
pp. 439-453 ◽  
Author(s):  
M. Ibs-von Seht ◽  
S. Blumenstein ◽  
R. Wagner ◽  
D. Hollnack ◽  
J. Wohlenberg

2020 ◽  
Author(s):  
Simon Kübler ◽  
Stephen Mathai Rucina ◽  
Maurice Obunga ◽  
Eileen Eckmeier ◽  
Donjá Aßbichler ◽  
...  

<p>We have studied the importance of geological and soil edaphic factors for the location and duration of inhabitance of hominin sites in the southern Kenya Rift, East Africa. Using examples from the Lake Magadi-Olorgesailie region, we demonstrate that field mapping and analytical techniques derived from geology and soil science can provide important information for research in early hominin migration and land use.</p><p>The Lake Magadi-Olorgesailie region is located in the center of the ~60-km wide rift floor and characterized by a complex network of sub-parallel, nearly vertical, fault escarpments. The largest area of the rift floor is covered by trachyte flows, while other volcanic rocks including basalts, phonolites and carbonatites are located around Mt. Olorgesailie, Mt. Esayeti, Mt. Suswa and Singaraini. The Mid Pleistocene Olorgesailie site is famous for an unusual abundance of hominin artefacts, fossil mammals and palaeoenvironmental indicators, preserved in sediments spanning ~1.2 to <0.4 Ma and has been the subject of wide-ranging and intensive studies on hominins and their archeology. Other important hominin sites in the region are located in the Koora Graben, and in the vicinity of Lake Magadi. </p><p>We have analyzed the chemical composition of a large number of geological and soil samples in the southern Kenya Rift, in order to understand the control of geochemical and tectonic processes on the release and distribution of vital soil nutrients.    </p><p>Results show that in the study region volcanic, tectonic and related pedogenic processes created a complex suite of landscape features potentially advantageous for human habitation. Analysis of soil samples from the main volcanic and metamorphic rocks as well as from sedimentary deposits shows that soil edaphic properties are closely correlated with the chemical composition of the parent materials and that deficiencies of soil nutrients are reflected in the mineralogy of the volcanic rocks. Particularly, deficient levels of calcium are sourced in the lack of calcium-bearing minerals in soils developed on trachytic rocks. Further, we show that soil nutrient distributions correlate with the relief created by tectonic faulting. We observed a significant increase of the concentrations of Ca, Mg, P in soils, with proximity to active normal faults.</p><p> We suggest that the combination of complex terrain and patchy nutrient distributions created narrow migration corridors potentially exploited by animals and the humans who hunted them. Our study implies that tectonics, geology and related soil edaphics have been important drivers for human habitation and strategic land use. Knowledge of these processes and their impact on past human-landscape interactions contributes to a broader understanding of how landscapes influenced hominin behavior and subsistence strategies in prehistoric time.</p>


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 80
Author(s):  
Paolo Conti ◽  
Marco Pistis ◽  
Stefano Bernardinetti ◽  
Alessio Barbagli ◽  
Andrea Zirulia ◽  
...  

In this paper, we present results of tectonic and geophysical investigations in the Kenya Rift valley, in the Nakuru area. We compiled a detailed geological map of the area based on published earlier works, well data and satellite imagery. The map was then integrated with original fieldwork and cross sections were constructed. In key areas, we then performed geophysical survey using Electrical Resistivity Tomography (ERT), Hybrid Source Audio MagnetoTelluric (HSAMT), and single station passive seismic measurements (HVSR). In the study area, a volcano-sedimentary succession of the Neogene-Quaternary age characterized by basalts, trachytes, pyroclastic rocks, and tephra with intercalated lacustrine and fluvial deposits crops out. Faulting linked with rift development is evident and occurs throughout the area crosscutting all rock units. We show a rotation of the extension in this portion of the Kenya rift with the NE–SW extension direction of a Neogene-Middle Pleistocene age, followed by the E–W extension direction of an Upper Pleistocene-Present age. Geophysical investigations allowed to outline main lithostratigraphic units and tectonic features at depth and were also useful to infer main cataclasites and fractured rock bodies, the primary paths for water flow in rocks. These investigations are integrated in a larger EU H2020 Programme aimed to produce a geological and hydrogeological model of the area to develop a sustainable water management system.


2020 ◽  
Author(s):  
Simon Riedl ◽  
Daniel Melnick ◽  
Geoffrey K Mibei ◽  
Lucy Njue ◽  
Manfred R Strecker

<p>In magmatically active continental rifts, crustal deformation is often accompanied by caldera volcanism along the rift axis. These caldera volcanoes help to characterize the spatiotemporal relationship between regional tectonic extension, the development of normal faults, and the role of magmatism during the long-term evolution of continental rifts. In the Kenya Rift, magmatic activity has been focused at regularly spaced Quaternary volcanoes, each located within an extensional sub-basin of the rift. We document the structural characteristics of the c. 36-ka-old Menengai Caldera and adjacent regions located within such a young zone of extension, to gain insight into the role of regional-scale structures and volcanism in a rift zone subjected to oblique extension, and discuss the role of magmatic centers in the context of advanced stages of rift-basin differentiation.</p><p>Our field mapping and high-resolution digital surface models in the greater Menengai area located in the Central Kenya Rift show that the interior rift sectors are dominated by NNE-striking Holocene normal faults perpendicular to the regional ESE-WNW extension direction. Inside the caldera, these structures continue, but are overprinted by post-collapse doming and faulting of the magmatic center, resulting in obliquely slipping normal faults bounding a resurgence horst. Radiocarbon dating of faulted units as young as 5 ka cal BP and the paleo-shorelines of a lake formed during the African Humid Period in the Nakuru Basin that we use as strain markers indicate that volcanism and faulting inside and in the vicinity of Menengai must have been sustained during the Holocene.</p><p>Our analysis confirms that the caldera is located at the center of an extending rift segment that is kinematically linked with adjacent zones of extension; similar volcano-tectonic relationships apply to virtually all larger volcanic centers in the Kenya Rift. These zones of extension in the inner sectors of the rift are arranged in en échelon patterns and are linked by transfer zones. In contrast to punctiform spreading centers in much more advanced extensional regions (e.g., the Red Sea) normal faulting in the Kenya Rift is not focused at these volcanic centers. We suggest that the magmatic centers in the segmented Kenya Rift are precursors of a more evolved rifting stage, where magmatic centers may constitute nucleation points of faulting in future magma-assisted rifting that will ultimately lead to the final stages of continental break-up.</p>


Geology ◽  
2021 ◽  
Author(s):  
D.M. Deocampo ◽  
R.B. Owen ◽  
T.K. Lowenstein ◽  
R.W. Renaut ◽  
N.M. Rabideaux ◽  
...  

Lake Magadi is an internally drained, saline and alkaline terminal sump in the southern Kenya Rift. Geochemistry of samples from an ~200 m core representing the past ~1 m.y. of the lake’s history shows some of the highest concentrations of transition metals and metalloids ever reported from lacustrine sediment, including redox-sensitive elements molybdenum, arsenic, and vanadium. Elevated concentrations of these elements represent times when the lake’s hypolimnion was euxinic—that is, anoxic, saline, and sulfide-rich. Euxinia was common after ca. 700 ka, and after that tended to occur during intervals of high orbital eccentricity. These were likely times when high-frequency hydrologic changes favored repeated episodes of euxinia and sulfide precipitation. High-amplitude environmental fluctuations at peak eccentricity likely impacted water balance in terrestrial habitats and resource availability for early hominins. These are associated with important events in human evolution, including the first appearance of Middle Stone Age technology between ca. 500 and 320 ka in the southern Kenya Rift.


Sign in / Sign up

Export Citation Format

Share Document