The role of hydrogen dilution of silane and phosphorus doping on hydrogenated microcrystalline silicon (μc-Si:H) films prepared by hot-wire chemical vapor deposition (HW-CVD) technique

2001 ◽  
Vol 395 (1-2) ◽  
pp. 206-212 ◽  
Author(s):  
S.R Jadkar ◽  
J.V Sali ◽  
M.G Takwale ◽  
D.V Musale ◽  
S.T Kshirsagar
1995 ◽  
Vol 377 ◽  
Author(s):  
P. Brogueira ◽  
V. Chu ◽  
J. P. Conde

ABSTRACTThe conductivity and the structural properties of thin films deposited by Hot-Wire Chemical Vapor Deposition (HW-CVD) from silane and hydrogen at a substrate temperature of 220 °C are shown to be strongly dependent on the filament temperature, Tfil, and process pressure, p. Amorphous silicon films are obtained at low pressures, p < 3 × 10−2Torr, for Tfil ∼ 1900 °C and FH2 = FSiH4. At this TfilJU, high deposition rates are observed, both with and without hydrogen dilution, and no silicon was deposited on the filaments. At Tfil ∼ 1500 °C, a transition from a-Si:H for p > 0.3 Torr to microcrystalline silicon (μc-Si:H) for p < 0.1 Torr occurs. In this temperature regime, silicon growth on the filaments is observed. /ic-Si:H growth both without hydrogen dilution and also in very thin films (∼ 0.05 μm) is achieved. Raman and X-Ray spectra give typical grain sizes of 10 – 20 nm, with a crystalline fraction higher than 50%. For both, Tju ∼ 1500 °C, p > 0.3 Torr and Tfil ∼ 1900 °C and p ∼ 2.7 × 10−2Torr, an increase of the crystalline fraction from 0 to ∼ 30% is observed when the hydrogen dilution, FH2/FSiH4, increases from 1 to > 4.


2016 ◽  
Vol 120 (22) ◽  
pp. 225105 ◽  
Author(s):  
Manuel Pomaska ◽  
Jan Mock ◽  
Florian Köhler ◽  
Uwe Zastrow ◽  
Martina Perani ◽  
...  

1999 ◽  
Vol 557 ◽  
Author(s):  
P. Alpuim ◽  
V. Chu ◽  
J. P. Conde

AbstractThe structural and optoelectronic properties of silicon thin films prepared by hot wire chemical vapor deposition and radio frequency plasma enhanced chemical vapor deposition are studied in the range of substrate temperatures (Tsub)from 100 °C to 25 °C. The defect density, structure factor and bond angle disorder of amorphous silicon films (a-Si:H) deposited by both techniques are strongly improved by the use of hydrogen dilution. Correlation of these structural properties with important optoelectronic properties, such as photo-to-dark conductivity ratio, is made. Microcrystalline silicon (μc-Si:H) is obtained using HW with a large crystalline fraction for hydrogen dilutions above 85% independently of Tsub. The deposition of μc-Si:H by RF requires increasing the hydrogen dilution and shows decreasing crystalline fraction as Tsub is decreased. The properties of the low Tsub films are compared to those of samples produced at 175 °C and 250 °C in the same reactors.


Sign in / Sign up

Export Citation Format

Share Document