hydrogen dilution
Recently Published Documents


TOTAL DOCUMENTS

391
(FIVE YEARS 11)

H-INDEX

28
(FIVE YEARS 1)

Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1081
Author(s):  
Jarmila Müllerová ◽  
Pavol Šutta ◽  
Michaela Holá

This paper reports on absorption properties of thin films of hydrogenated amorphous and microcrystalline silicon considered for absorption-based applications, such as solar cell, photodetectors, filters, sensors, etc. A series of four amorphous and four microcrystalline samples PECVD deposited under varied hydrogen dilution was under consideration. Various absorption metrics, based separately on the absorption coefficient and the refractive index (single pass absorption, optical path length, classical light trapping limit) or direct absorptance calculated by the Yablonovitch concept based on a mutual role of them were examined and compared. Differences in absorption abilities are related to the evolving thin film microstructure.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Venkanna Kanneboina ◽  
Pratima Agarwal

AbstractSpectroscopic ellipsometry (SE) is a sophisticated technique to find the optical constants, bandgap and microstructure of thin layer. SE is used to study the microstructure evolution in boron-doped amorphous silicon films for different hydrogen flow rates (HFR). Spectral dependance of the real and imaginary parts of pseudo-dielectric constant is obtained at a fix angle of incidence (70°). Tauc–Lorentz (T–L) optical model is used to estimate the thickness, bandgap, optical constant and thickness of the top rough layer of the films, whereas Bruggeman effective medium approximation (BEMA) is applied to find the volume fractions of amorphous, crystalline and void phases. A shift in peak position from 3.65 to 4.1 eV in dielectric constant is observed as the hydrogen flow rate is increased from 30 to 70 SCCM. This is accompanied by the emergence of a peak near 3.4 eV, which belongs to the direct bandgap of c-Si. These observations suggest an improvement in microstructure of the films deposited at higher HFR. It is also supported by the observation that films deposited at higher HFR have higher magnitude of amplitude parameter and less broadening. Fitting of experimental data using BEMA also suggests that crystalline fraction increases and amorphous fraction decreases at higher HFR. The bandgap and thickness of top rough layer estimated from SE data are matched well with those obtained using transmission data and atomic force microscopy.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1045
Author(s):  
Ismael Cosme ◽  
Andrey Kosarev ◽  
Saraí Zarate-Galvez ◽  
Hiram E. Martinez ◽  
Svetlana Mansurova ◽  
...  

In this work, we present the study of the atomic composition in amorphous SiXGeY:HZ films deposited by radio frequency (RF—13.56 MHz) plasma discharge at low deposition temperature. A study and control of Si and Ge atoms termination using H-dilution in SiGe:H alloys deposited by RF plasma discharge was conducted and we made a comparison with low-frequency plasma discharge studies. Solid contents of the main elements and contaminants were determined by SIMS technique. It was found that for low dilution rates from RH = 9 to 30, the germanium content in the solid phase strongly depends on the hydrogen dilution and varies from Y = 0.49 to 0.68. On the other hand, with a higher presence of hydrogen in the mixture, the germanium content does not change and remains close to the value of Y = 0.69. The coefficient of Ge preferential incorporation depended on RH and varied from PGe = 0.8 to 4.3. Also, the termination of Si and Ge atoms with hydrogen was studied using FTIR spectroscopy. Preferential termination of Si atoms was observed in the films deposited with low RH < 20, while preferential termination of Ge atoms was found in the films deposited with high RH > 40. In the range of 20 < RH < 40, hydrogen created chemical bonds with both Si and Ge atoms without preference.


2019 ◽  
Vol 966 ◽  
pp. 398-403
Author(s):  
Yoyok Cahyono ◽  
Novita Dwi Purnamasari ◽  
Mochamad Zainuri ◽  
Suminar Pratapa ◽  
Darminto

Effect of defect - through observation of energy absorption Urbach, on deposition rate, energy band gap, and surface roughness of intrinsic thin film are investigated using Radio Frequency Plasma Enhance Chemical Vapor Deposition (RF-PECVD). Films are grown on ITO (Indium Tin Oxide) glass substrate. Analysis of energy band gap is conducted to determine changes in the structure of a thin film of a-Si:H. Energy band gap is important to determine the portion of the spectrum of sunlight that is absorbed solar cells. From the characterization using UV-Vis spectrometer and the Tauc’s plot method, the width of the resulting energy band gap is greater if the hydrogen dilution is increased. It can be shown that the increase of the hydrogen dilution, will increase the energy band gap, and the surface roughness of thin layers. Instead, the improvement of the hydrogen dilution decrease the rate of deposition and Urbach energy. It is estimated that with greater hydrogen dilution, an intrinsic thin film of a-Si:H is more conductive for more reduction in residual of band tail defects or dangling bond defects.


Coatings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 305 ◽  
Author(s):  
Li-Han Kau ◽  
Hung-Jui Huang ◽  
Hsueh-Er Chang ◽  
Yu-Lin Hsieh ◽  
Chien-Chieh Lee ◽  
...  

In this paper, the correlation of impedance matching and optical emission spectroscopy during plasma-enhanced chemical vapor deposition (PECVD) was systematically investigated in SiH4 plasma diluted by various hydrogen dilution ratios. At the onset of nanocrystallinity in SiH4− depleted plasma condition, the SiH+ radical reached a threshold value as the dominant radical, such that a-Si to nc-Si transition was obtained. Furthermore, the experimental data of impedance analysis showed that matching behavior can be greatly influenced by variable plasma parameters due to the change of various hydrogen dilution ratios, which is consistent with the recorded optical emission spectra (OES) of Hα* radicals. Quadruple mass spectrometry (QMS) and transmission electron microscopy (TEM) were employed as associated diagnostic and characterization tools to confirm the phase transformation and existence of silicon nanocrystals.


Sign in / Sign up

Export Citation Format

Share Document