Photoionization and Collisional Ionization of Excited Atoms using Synchrotron and Laser Radiations

Author(s):  
F.J. Wuilleumier ◽  
D.L. Ederer ◽  
J.L. Picqué
1967 ◽  
Vol 47 (7) ◽  
pp. 2506-2507 ◽  
Author(s):  
H. Hotop ◽  
A. Niehaus

Author(s):  
Jean-Patrick Connerade
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
T. M. Wintermantel ◽  
M. Buchhold ◽  
S. Shevate ◽  
M. Morgado ◽  
Y. Wang ◽  
...  

AbstractWhether it be physical, biological or social processes, complex systems exhibit dynamics that are exceedingly difficult to understand or predict from underlying principles. Here we report a striking correspondence between the excitation dynamics of a laser driven gas of Rydberg atoms and the spreading of diseases, which in turn opens up a controllable platform for studying non-equilibrium dynamics on complex networks. The competition between facilitated excitation and spontaneous decay results in sub-exponential growth of the excitation number, which is empirically observed in real epidemics. Based on this we develop a quantitative microscopic susceptible-infected-susceptible model which links the growth and final excitation density to the dynamics of an emergent heterogeneous network and rare active region effects associated to an extended Griffiths phase. This provides physical insights into the nature of non-equilibrium criticality in driven many-body systems and the mechanisms leading to non-universal power-laws in the dynamics of complex systems.


1996 ◽  
Vol 175 ◽  
pp. 363-366
Author(s):  
Koujun Yamashita

X-ray emissions from clusters are most likely originated from a thin hot plasma in a collisional ionization equilibrium. The optical depth of continuum component is order of 10–3, whereas that of emission lines is around unity. Present emission models used for spectral fitting can not estimate this effect, so that the determination of elemental abundances seems to include large uncertainty. The high resolution spectroscopy with ASCA gives a clue to investigate the physical state of hot intracluster gas and a impact to reconsider the basic atomic processes. This is important issue to deeply understand the structure, formation and evolution of clusters, and the origin of intracluster gas.


2019 ◽  
Vol 489 (3) ◽  
pp. 4300-4310 ◽  
Author(s):  
A Sezer ◽  
T Ergin ◽  
R Yamazaki ◽  
H Sano ◽  
Y Fukui

ABSTRACT We present the results from the Suzaku X-ray Imaging Spectrometer observation of the mixed-morphology supernova remnant (SNR) HB9 (G160.9+2.6). We discovered recombining plasma (RP) in the western Suzaku observation region and the spectra here are well described by a model having collisional ionization equilibrium (CIE) and RP components. On the other hand, the X-ray spectra from the eastern Suzaku observation region are best reproduced by the CIE and non-equilibrium ionization model. We discuss possible scenarios to explain the origin of the RP emission based on the observational properties and concluded that the rarefaction scenario is a possible explanation for the existence of RP. In addition, the gamma-ray emission morphology and spectrum within the energy range of 0.2–300 GeV are investigated using 10 yr of data from the Fermi Large Area Telescope (LAT). The gamma-ray morphology of HB9 is best described by the spatial template of radio continuum emission. The spectrum is well fit to a log-parabola function and its detection significance was found to be 25σ. Moreover, a new gamma-ray point source located just outside the south-east region of the SNR’s shell was detected with a significance of 6σ. We also investigated the archival H i and CO data and detected an expanding shell structure in the velocity range of $-10.5$ and $+1.8$ km s−1 that is coinciding with a region of gamma-ray enhancement at the southern rim of the HB9 shell.


2007 ◽  
pp. 33-44
Author(s):  
N. Simonovic ◽  
M. Predojevic ◽  
V. Pankovic ◽  
P. Grujic

Highly excited atoms acquire very large dimensions and can be present only in a very rarified gas medium, such as the interstellar space. Multiply excited beryllium-like systems, when excited to large principal quantum numbers, have a radius of r ? 10 ?. We examine the semiclassical spectrum of quadruple highly excited four-electron atomic systems for the plane model of equivalent electrons. The energy of the system consists of rotational and vibrational modes within the almost circular orbit approximation, as used in a previous calculation for the triply excited three-electron systems. Here we present numerical results for the beryllium atom. The lifetimes of the semiclassical states are estimated via the corresponding Lyapunov exponents. The vibrational modes relative contribution to the energy levels rises with the degree of the Coulombic excitation. The relevance of the results is discussed both from the observational and heuristic point of view.


Sign in / Sign up

Export Citation Format

Share Document