From Genes to Genomes: A New Paradigm for Studying Fungal Pathogenesis in Magnaporthe oryzae

Author(s):  
Jin‐Rong Xu ◽  
Xinhua Zhao ◽  
Ralph A. Dean
2000 ◽  
Vol 179 ◽  
pp. 177-183
Author(s):  
D. M. Rust

AbstractSolar filaments are discussed in terms of two contrasting paradigms. The standard paradigm is that filaments are formed by condensation of coronal plasma into magnetic fields that are twisted or dimpled as a consequence of motions of the fields’ sources in the photosphere. According to a new paradigm, filaments form in rising, twisted flux ropes and are a necessary intermediate stage in the transfer to interplanetary space of dynamo-generated magnetic flux. It is argued that the accumulation of magnetic helicity in filaments and their coronal surroundings leads to filament eruptions and coronal mass ejections. These ejections relieve the Sun of the flux generated by the dynamo and make way for the flux of the next cycle.


2019 ◽  
Vol 476 (21) ◽  
pp. 3227-3240 ◽  
Author(s):  
Shanshan Wang ◽  
Yanxiang Zhao ◽  
Long Yi ◽  
Minghe Shen ◽  
Chao Wang ◽  
...  

Trehalose-6-phosphate (T6P) synthase (Tps1) catalyzes the formation of T6P from UDP-glucose (UDPG) (or GDPG, etc.) and glucose-6-phosphate (G6P), and structural basis of this process has not been well studied. MoTps1 (Magnaporthe oryzae Tps1) plays a critical role in carbon and nitrogen metabolism, but its structural information is unknown. Here we present the crystal structures of MoTps1 apo, binary (with UDPG) and ternary (with UDPG/G6P or UDP/T6P) complexes. MoTps1 consists of two modified Rossmann-fold domains and a catalytic center in-between. Unlike Escherichia coli OtsA (EcOtsA, the Tps1 of E. coli), MoTps1 exists as a mixture of monomer, dimer, and oligomer in solution. Inter-chain salt bridges, which are not fully conserved in EcOtsA, play primary roles in MoTps1 oligomerization. Binding of UDPG by MoTps1 C-terminal domain modifies the substrate pocket of MoTps1. In the MoTps1 ternary complex structure, UDP and T6P, the products of UDPG and G6P, are detected, and substantial conformational rearrangements of N-terminal domain, including structural reshuffling (β3–β4 loop to α0 helix) and movement of a ‘shift region' towards the catalytic centre, are observed. These conformational changes render MoTps1 to a ‘closed' state compared with its ‘open' state in apo or UDPG complex structures. By solving the EcOtsA apo structure, we confirmed that similar ligand binding induced conformational changes also exist in EcOtsA, although no structural reshuffling involved. Based on our research and previous studies, we present a model for the catalytic process of Tps1. Our research provides novel information on MoTps1, Tps1 family, and structure-based antifungal drug design.


Author(s):  
Markus Krüger ◽  
Horst Krist

Abstract. Recent studies have ascertained a link between the motor system and imagery in children. A motor effect on imagery is demonstrated by the influence of stimuli-related movement constraints (i. e., constraints defined by the musculoskeletal system) on mental rotation, or by interference effects due to participants’ own body movements or body postures. This link is usually seen as qualitatively different or stronger in children as opposed to adults. In the present research, we put this interpretation to further scrutiny using a new paradigm: In a motor condition we asked our participants (kindergartners and third-graders) to manually rotate a circular board with a covered picture on it. This condition was compared with a perceptual condition where the board was rotated by an experimenter. Additionally, in a pure imagery condition, children were instructed to merely imagine the rotation of the board. The children’s task was to mark the presumed end position of a salient detail of the respective picture. The children’s performance was clearly the worst in the pure imagery condition. However, contrary to what embodiment theories would suggest, there was no difference in participants’ performance between the active rotation (i. e., motor) and the passive rotation (i. e., perception) condition. Control experiments revealed that this was also the case when, in the perception condition, gaze shifting was controlled for and when the board was rotated mechanically rather than by the experimenter. Our findings indicate that young children depend heavily on external support when imagining physical events. Furthermore, they indicate that motor-assisted imagery is not generally superior to perceptually driven dynamic imagery.


Author(s):  
Sarah Schäfer ◽  
Dirk Wentura ◽  
Christian Frings

Abstract. Recently, Sui, He, and Humphreys (2012) introduced a new paradigm to measure perceptual self-prioritization processes. It seems that arbitrarily tagging shapes to self-relevant words (I, my, me, and so on) leads to speeded verification times when matching self-relevant word shape pairings (e.g., me – triangle) as compared to non-self-relevant word shape pairings (e.g., stranger – circle). In order to analyze the level at which self-prioritization takes place we analyzed whether the self-prioritization effect is due to a tagging of the self-relevant label and the particular associated shape or due to a tagging of the self with an abstract concept. In two experiments participants showed standard self-prioritization effects with varying stimulus features or different exemplars of a particular stimulus-category suggesting that self-prioritization also works at a conceptual level.


2003 ◽  
Vol 58 (4) ◽  
pp. 305-312 ◽  
Author(s):  
Carol J. Gill ◽  
Donald G. Kewman ◽  
Ruth W. Brannon

1995 ◽  
Vol 40 (11) ◽  
pp. 1072-1073
Author(s):  
Michael J. Lambert ◽  
R. Scott Nebeker

1981 ◽  
Vol 26 (7) ◽  
pp. 507-509 ◽  
Author(s):  
Craig T. Ramey ◽  
David MacPhee

PsycCRITIQUES ◽  
2005 ◽  
Vol 50 (47) ◽  
Author(s):  
Mark H. Waugh

PsycCRITIQUES ◽  
2006 ◽  
Vol 51 (10) ◽  
Author(s):  
Robert Welsh
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document