On Schrödinger Equation in Large Dimension and Connected Problems in Statistical Mechanics

Author(s):  
Bernard Helffer
Author(s):  
C. Huang ◽  
Yong-Chang Huang ◽  
Jia-Min Song

Density distribution function of classical statistical mechanics is generally generalized as a product of a general complex function and its complex Hermitian conjugate function, and the average of classical statistical mechanics is generalized as the average of the quantum mechanics. Furthermore, this paper derives three ones of the five axiom presumptions of quantum mechanics, e.g., deduces Schrȍdinger equation by two general ways, makes the three axiom presumptions into three theorems of quantum mechanics, not only solves the crisis to hard understand, but also gets new theories and new discoveries, e.g., this paper solves the crisis of the origin of the wave-particle duality, derives operators, eigenvalues and eigenstates, deduces commutation relations for coordinate and momentum as well as the time and energy, and discovers quantum mechanics is just a generalization ( mechanics ) theory of the complex square root of ( real density function of ) classical statistical mechanics. Quantum mechanics being just a generalization theory of the complex square root of classical statistical mechanics is both new physics and revolutionary discovery, which are affecting people’s deep philosophical thinking for modern physics development, solve all the crisises of quantum mechanics, quantum information and so on, and make quantum mechanics have scientific solid bases being checked and both no basic axiom presumption and no all the quantum strange incomprehensible properties, because classical statistical mechanics and the complex square root of classical statistical mechanics have the scientific solid bases being checked. In addition, this paper discovers the reason no taking the time derivative of space coordinates in Schrȍdinger equation. Therefore, this paper gives solution to the crisis of the first quantization origin, and mainly deduces quantum physics no all the quantum current strange incomprehensible properties.


Author(s):  
C. Huang ◽  
Yong-Chang Huang ◽  
Jia-Min Song

Density distribution function of classical statistical mechanics is generally generalized as a product of a general complex function and its complex Hermitian conjugate function, and the average of classical statistical mechanics is generalized as the average of the quantum mechanics. Furthermore, this paper derives three ones of the five axiom presumptions of quantum mechanics, e.g., deduces Schrȍdinger equation by two general ways, makes the three axiom presumptions into three theorems of quantum mechanics, not only solves the crisis to hard understand, but also gets new theories and new discoveries, e.g., this paper solves the crisis of the origin of the wave-particle duality (i.e., complementary principle), derives operators, eigenvalues and eigenstates, deduces commutation relations for coordinate and momentum as well as the time and energy, and discovers quantum mechanics is just a generalization ( mechanics ) theory of the complex square root of ( real density function of ) classical statistical mechanics, which will make people renew thinking modern physics development. In addition, this paper discovers the reason that Schrȍdinger equation doesn’t takes the time derivative of space coordinates. Therefore, this paper gives solution to the Crisis of the first quantization origin.


2018 ◽  
Vol 2 (2) ◽  
pp. 43-47
Author(s):  
A. Suparmi, C. Cari, Ina Nurhidayati

Abstrak – Persamaan Schrödinger adalah salah satu topik penelitian yang yang paling sering diteliti dalam mekanika kuantum. Pada jurnal ini persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Fungsi gelombang dan spektrum energi yang dihasilkan menunjukkan kharakteristik atau tingkah laku dari partikel sub atom. Dengan menggunakan metode pendekatan hipergeometri, diperoleh solusi analitis untuk bagian radial persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Hasil yang diperoleh menunjukkan terjadi peningkatan energi yang sebanding dengan meningkatnya parameter panjang minimal dan parameter potensial Coulomb Termodifikasi. Kata kunci: persamaan Schrödinger, panjang minimal, fungsi gelombang, energi, potensial Coulomb Termodifikasi Abstract – The Schrödinger equation is the most popular topic research at quantum mechanics. The  Schrödinger equation based on the concept of minimal length formalism has been obtained for modified Coulomb potential. The wave function and energy spectra were used to describe the characteristic of sub-atomic particle. By using hypergeometry method, we obtained the approximate analytical solutions of the radial Schrödinger equation based on the concept of minimal length formalism for the modified Coulomb potential. The wave function and energy spectra was solved. The result showed that the value of energy increased by the increasing both of minimal length parameter and the potential parameter. Key words: Schrödinger equation, minimal length formalism (MLF), wave function, energy spectra, Modified Coulomb potential


Author(s):  
Niels Engholm Henriksen ◽  
Flemming Yssing Hansen

This introductory chapter considers first the relation between molecular reaction dynamics and the major branches of physical chemistry. The concept of elementary chemical reactions at the quantized state-to-state level is discussed. The theoretical description of these reactions based on the time-dependent Schrödinger equation and the Born–Oppenheimer approximation is introduced and the resulting time-dependent Schrödinger equation describing the nuclear dynamics is discussed. The chapter concludes with a brief discussion of matter at thermal equilibrium, focusing at the Boltzmann distribution. Thus, the Boltzmann distribution for vibrational, rotational, and translational degrees of freedom is discussed and illustrated.


Sign in / Sign up

Export Citation Format

Share Document