X-Chromosome Inactivation as a System of Gene Dosage Compensation to Regulate Gene Expression

Author(s):  
Mary F. Lyon
2020 ◽  
Vol 160 (6) ◽  
pp. 283-294 ◽  
Author(s):  
Paola Rebuzzini ◽  
Maurizio Zuccotti ◽  
Silvia Garagna

X dosage compensation between XX female and XY male mammalian cells is achieved by a process known as X-chromosome inactivation (XCI). XCI initiates early during preimplantation development in female cells, and it is subsequently stably maintained in somatic cells. However, XCI is a reversible process that occurs in vivo in the inner cell mass of the blastocyst, in primordial germ cells or in spermatids during reprogramming. Erasure of transcriptional gene silencing can occur though a mechanism named X-chromosome reactivation (XCR). XCI and XCR have been substantially deciphered in the mouse, whereas they still remain debated in the human. In this review, we summarized the recent advances in the knowledge of X-linked gene dosage compensation during mouse and human preimplantation development and in pluripotent stem cells.


2019 ◽  
Vol 63 (3-4-5) ◽  
pp. 223-233 ◽  
Author(s):  
Alexander I. Shevchenko ◽  
Elena V. Dementyeva ◽  
Irina S. Zakharova ◽  
Suren M. Zakian

In eutherian mammals, dosage compensation arose to balance X-linked gene expression between sexes and relatively to autosomal gene expression in the evolution of sex chromosomes. Dosage compensation occurs in early mammalian development and comprises X chromosome upregulation and inactivation that are tightly coordinated epigenetic processes. Despite a uniform principle of dosage compensation, mechanisms of X chromosome inactivation and upregulation demonstrate a significant variability depending on sex, developmental stage, cell type, individual, and mammalian species. The review focuses on relationships between X chromosome inactivation and upregulation in mammalian early development.


2019 ◽  
Author(s):  
Ava C. Carter ◽  
Jin Xu ◽  
Meagan Y. Nakamoto ◽  
Yuning Wei ◽  
Quanming Shi ◽  
...  

Dosage compensation between the sexes has emerged independently multiple times during evolution, often harnessing long noncoding RNAs (lncRNAs) to alter gene expression on the sex chromosomes. In eutherian mammals, X chromosome inactivation (XCI) in females proceeds via the lncRNA Xist, which coats one of the two X chromosomes and recruits repressive proteins to epigenetically silence gene expression in cis1,2. How Xist evolved new functional RNA domains to recruit ancient, pleiotropic protein partners is of great interest. Here we show that Spen, an Xist-binding repressor protein essential for XCI3-7, binds to ancient retroviral RNA, performing a surveillance role to recruit chromatin silencing machinery to these parasitic loci. Spen inactivation leads to de-repression of a subset of endogenous retroviral (ERV) elements in embryonic stem cells, with gain of chromatin accessibility, active histone modifications, and ERV RNA transcription. Spen binds directly to ERV RNAs that show structural similarity to the A-repeat of Xist, a region critical for Xist-mediated gene silencing8-9. ERV RNA and Xist A-repeat bind the RRM3 domain of Spen in a competitive manner. Insertion of an ERV into an A-repeat deficient Xist rescues binding of Xist RNA to Spen and results in local gene silencing in cis. These results suggest that insertion of an ERV element into proto-Xist may have been a critical evolutionary event, which allowed Xist to coopt transposable element RNA-protein interactions to repurpose powerful antiviral chromatin silencing machinery for sex chromosome dosage compensation.


2019 ◽  
pp. 75-87
Author(s):  
AI Ibraimov

X-chromosome inactivation (XCI) is the process by which one of two X chromosomes in mammalian female cells is inactivated. The DNA of the inactive X chromosome is packaged in transcriptionally inactive heterochromatin. It is generally accepted that XCI have evolved to enable dosage compensation in mammals as a way to equalize X-linked gene expression between XX and XY individuals. However, there remain several controversial issues regarding the causes of XCI. The most important of them, why dosage compensation of genes? An alternative hypothesis is discussed that XCI is caused by dose compensation for heterochromatin, rather than genes, in the genome of female mammals due to the lack of a sex chromosome in their karyotype with a large constitutive heterochromatin block, as in Y chromosome in males. It is for this reason that heterochromatinization of the euchromatin regions of one of the X chromosomes occurs. The biological meaning of heterochromatinization is to increase the density of condensed chromatin (??) around the interphase nucleus, responsible for removing excess heat from the nucleus into the cytoplasm, since the compaction of ?? depends on the amount of heterochromatin. The consequence of this process is the inactivation of genes that were in the area of heterochromatinization of the X chromosome. Keywords: X-chromosome inactivation; Lyonization; Gene dosage compensation; Heterochromatin dosage compensation; Cell thermoregulation


2021 ◽  
Vol 22 (3) ◽  
pp. 1114
Author(s):  
Ali Youness ◽  
Charles-Henry Miquel ◽  
Jean-Charles Guéry

Women represent 80% of people affected by autoimmune diseases. Although, many studies have demonstrated a role for sex hormone receptor signaling, particularly estrogens, in the direct regulation of innate and adaptive components of the immune system, recent data suggest that female sex hormones are not the only cause of the female predisposition to autoimmunity. Besides sex steroid hormones, growing evidence points towards the role of X-linked genetic factors. In female mammals, one of the two X chromosomes is randomly inactivated during embryonic development, resulting in a cellular mosaicism, where about one-half of the cells in a given tissue express either the maternal X chromosome or the paternal one. X chromosome inactivation (XCI) is however not complete and 15 to 23% of genes from the inactive X chromosome (Xi) escape XCI, thereby contributing to the emergence of a female-specific heterogeneous population of cells with bi-allelic expression of some X-linked genes. Although the direct contribution of this genetic mechanism in the female susceptibility to autoimmunity still remains to be established, the cellular mosaicism resulting from XCI escape is likely to create a unique functional plasticity within female immune cells. Here, we review recent findings identifying key immune related genes that escape XCI and the relationship between gene dosage imbalance and functional responsiveness in female cells.


Nature ◽  
2017 ◽  
Vol 550 (7675) ◽  
pp. 244-248 ◽  
Author(s):  
Taru Tukiainen ◽  
◽  
Alexandra-Chloé Villani ◽  
Angela Yen ◽  
Manuel A. Rivas ◽  
...  

Abstract X chromosome inactivation (XCI) silences transcription from one of the two X chromosomes in female mammalian cells to balance expression dosage between XX females and XY males. XCI is, however, incomplete in humans: up to one-third of X-chromosomal genes are expressed from both the active and inactive X chromosomes (Xa and Xi, respectively) in female cells, with the degree of ‘escape’ from inactivation varying between genes and individuals1,2. The extent to which XCI is shared between cells and tissues remains poorly characterized3,4, as does the degree to which incomplete XCI manifests as detectable sex differences in gene expression5 and phenotypic traits6. Here we describe a systematic survey of XCI, integrating over 5,500 transcriptomes from 449 individuals spanning 29 tissues from GTEx (v6p release) and 940 single-cell transcriptomes, combined with genomic sequence data. We show that XCI at 683 X-chromosomal genes is generally uniform across human tissues, but identify examples of heterogeneity between tissues, individuals and cells. We show that incomplete XCI affects at least 23% of X-chromosomal genes, identify seven genes that escape XCI with support from multiple lines of evidence and demonstrate that escape from XCI results in sex biases in gene expression, establishing incomplete XCI as a mechanism that is likely to introduce phenotypic diversity6,7. Overall, this updated catalogue of XCI across human tissues helps to increase our understanding of the extent and impact of the incompleteness in the maintenance of XCI.


2016 ◽  
Vol 28 (2) ◽  
pp. 199
Author(s):  
D. Kradolfer ◽  
J. Knubben ◽  
V. Flöter ◽  
J. Bick ◽  
S. Bauersachs ◽  
...  

X-Chromosome inactivation in female mammals starts during early blastocyst stage with expression of the X-inactive specific transcript (XIST), which coats and silences the inactive X chromosome. However, this compensation is not complete in blastocysts, as a large number of X-linked transcripts are more highly expressed in female embryos than in males. Furthermore, the process of X chromosome inactivation is altered in IVF and cloned porcine embryos, possibly explaining problems of embryo survival with these techniques. The aim of this study was to gain more insights into the transcriptional dynamics of the porcine pre-implantation embryo, with a particular focus on sex-specific differences. RNA sequencing (RNA-Seq) was performed for individual blastocysts at 8, 10, and 12 days after ovulation, and the temporal development of sex-specific transcripts was analysed. German Landrace sows were cycle synchronized and inseminated with sperm of the same Pietrain boar. On Days 8, 10, and 12 post-insemination, sows were slaughtered and embryos were removed from the uterus using 10 mL of PBS (pH 7.4) per horn. Single embryos were shock frozen in liquid nitrogen and stored at –80°C until the extraction of RNA and DNA (AllPrep DNA/RNA Micro Kit, Qiagen, Valencia, CA, USA). Using the isolated DNA, the sex of the embryos was determined and 5 female and male embryos, respectively, were analysed per stage. Illumina TruSeq Stranded mRNA libraries (Illumina Inc., San Diego, CA, USA) were sequenced on a HiSEqn 2500 (Illumina Inc.), and 15 to 25 million 100-bp single-end reads were generated per sample. Reads were filtered and processed using Trimmomatic and mapped to the porcine genome assembly Sscrofa10.2 with TopHat2. Mapped reads were counted by the use of QuasR qCount based on the current National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/) GFF3 annotation file. Statistical analysis of count data was performed with the BioConductor R (https://www.bioconductor.org/) package DESEqn 2. At all 3 stages, we found 7 Y-linked transcripts that were highly expressed in male embryos (EIF2S3, EIF1AY, LOC100624590, LOC100625207, LOC100624329, LOC102162178, LOC100624937). On the other hand, 47 X-linked transcripts showed increased expression in female blastocysts, most of them at all 3 time points. However, a small number of genes (DDX3X, LAMP2, and RPS6KA3) were more highly expressed in females at Days 8 and 10 but more highly expressed in males at Day 12. Three X-linked genes (OFD1, KAL1, and LOC100525092) were more highly expressed in male embryos, although only at a low fold change of 1.2 to 1.4. Furthermore, expression of 8 transcripts located on autosomes was higher in females. In conclusion, our study expands the current knowledge of sex-specific gene expression in 8- to 12-day-old porcine blastocysts, a critical time period during pre-implantation embryo development.


Sign in / Sign up

Export Citation Format

Share Document