The effect of oviductal epithelial cell co-culture during in vitro maturation on sow oocyte morphology, fertilization and embryo development

2003 ◽  
Vol 59 (9) ◽  
pp. 1889-1903 ◽  
Author(s):  
Annadie Kidson ◽  
Eric Schoevers ◽  
Pieter Langendijk ◽  
Jos Verheijden ◽  
Ben Colenbrander ◽  
...  
2021 ◽  
Vol 14 (2) ◽  
pp. 452-456
Author(s):  
Mohamed Fathi ◽  
Amr F. Elkarmoty

Aim: Several factors had been concerned with the developmental competence of the sheep oocyte. This study aims to investigate the effect of adding growth factors (insulin-like growth factor 1 [IGF-1] and epidermal growth factor [EGF]) in the maturation medium of ewe oocytes selected based on brilliant cresyl blue (BCB) screening on in vitro maturation (IVM), fertilization, and pre-implantation embryo development. Materials and Methods: Cumulus-oocyte complexes (COCs) were obtained from the ovaries of slaughtered ewes by either aspiration or slicing techniques. COCs were in vitro matured in a medium containing IGF-1 and EGF (control group). For BCB screening, oocytes were stained and divided into BCB+ oocytes that matured in the same maturation conditions without adding growth factors (Group 2) or in the presence of growth factors (Group 3), and BCB– oocytes that matured in medium without growth factors (Group 4) or with growth factors (Group 5). Results: The supplementation of the maturation medium with growth factors during IVM of (BCB+) oocytes resulted in a significant increase in nuclear maturation rate (90.9%), fertilization rate (75.6%), and embryo developmental rates (60.0%, 46.7%, and 33.3% for cleavage, morula, and blastocyst, respectively). Conclusion: Culturing BCB+ oocytes in a maturation medium containing both EGF and IGF-1 showed a significant improvement in nuclear maturation, fertilization, and pre-implantation embryo development in vitro.


2014 ◽  
Vol 9 (7) ◽  
pp. 428-439 ◽  
Author(s):  
W.A. Khalil ◽  
Sh. A. Gabr ◽  
Sh. M. Shamiah ◽  
A.M.A. El-Haif ◽  
A.E. Abdel-Khal

2011 ◽  
Vol 23 (1) ◽  
pp. 169
Author(s):  
J. T. Kang ◽  
M. Atikuzzaman ◽  
D. K. Kwon ◽  
S. J. Park ◽  
S. J. Kim ◽  
...  

The in vitro developmental abilities of porcine oocytes are generally increasing steadily at a similar ratio to those of in vivo embryos. However, it has been suggested that the in vitro culture system for the development of porcine embryos is not optimal. In this study, we investigated the effect of 2 oxygen concentrations (5 and 20%) on porcine embryo development during in vitro maturation and in vitro culture and analyzed differences in gene expression of resulting blastocysts. Oocytes were recovered by aspiration of slaughterhouse ovaries and then matured in tissue culture medium (TCM) 199 supplemented with 10% porcine follicular fluid (pFF), epidermal growth factor (EGF), insulin, pyruvate, cystine, and gonadotropin. Matured oocytes were then activated parthenogenetically, cultured in PZM-3 media for 7 days. In vitro maturation (M group) of oocytes was carried out under two oxygen concentration (5 and 20%) in terms of nuclear maturation (polar body extrusion; Exp. 1). The developmental differences between 5% oxygen culture group and 20% oxygen culture group during in vitro culture (C group) of embryos after parthenogenetic activation was investigated in terms of first cleavage and blastocyst formation (Exp. 2). Relative mRNA abundance of multiple genes in blastocysts was analyzed for transcript abundance of genes related with metabolism (GLUT1, LDHA), oxidative response (MnSOD, GPX1), apoptosis (BAX, Bcl2), and developmental competence (CCNB1, IGF2R; Exp. 3). The results show there were no significant differences in maturation rate between 2 oxygen concentrations during in vitro maturation (83 v. 86%). It was thought that cumulus cells surrounding oocytes might have attenuated oxidative stress, but number of resulting blastocysts were (P < 0.05) increased in 5% IVC group when compared with 20% IVC group (18.67 v. 14.09%, respectively). Moreover, the M20C5 group (23.01%) had a beneficial effect on in vitro culture compared with M5C5 (14.32%), M5C20 (10.30%), and M20C20 (17.88%) groups. Total cell numbers were not significantly different among groups. According to mRNA abundance data of multiple genes, each group altered the expression of genes in various patterns. Therefore, it could be concluded that high oxygen tension during in vitro maturation and low oxygen tension during in vitro culture might alter the expression of multiple genes related to oocyte competence and improve (P < 0.05) embryo development, but not blastocyst quality. This study was supported by MKE (#2009-67-10033839, #2009-67-10033805), NRF (#M10625030005-508-10N25), BK21 for Veterinary Science, IPET (#109023-05-1-CG000), and Hanhwa L&C.


2011 ◽  
Vol 23 (1) ◽  
pp. 211
Author(s):  
K. R. Babu ◽  
R. Sharma ◽  
K. P. Singh ◽  
A. George ◽  
M. S. Chauhan ◽  
...  

Ovarian nitric oxide (NO) and that produced within the oocytes and embryos have been reported to play important roles in oocyte meiotic maturation and embryo development. Production of NO is catalyzed by NO synthase (NOS), which exists in 3 isoforms, the constitutive endothelial (eNOS) and neuronal (nNOS) isoforms and the inducible (iNOS) isoform. We have previously shown that low concentrations of NO stimulate and high concentrations inhibit embryo development, and that endogenous NO produced by iNOS is necessary for optimal embryo development in the buffalo. The present study was aimed at localizing different isoforms of NOS and examining their relative mRNA abundance in buffalo oocytes and embryos. Oocytes from slaughterhouse ovaries were subjected to in vitro maturation in 100-μL droplets (10 to 15 oocytes/droplet) of in vitro maturation medium (TCM-199 + 10% FBS + 5 μg mL–1 of pFSH + 1 μg mL–1 of oestradiol-17β + 0.81 mM sodium pyruvate + 10% buffalo follicular fluid + 50 μg mL–1 of gentamicin) for 24 h in a CO2 incubator (5% CO2 in air) at 38.5°C. In vitro fertilization was carried out by incubating in vitro-matured oocytes with 2 to 4 million spermatozoa mL–1 for 18 h. The presumed zygotes were cultured on original beds of cumulus cells in in vitro culture medium (mCR2aa + 0.6% BSA + 10% FBS) for up to 8 days post-insemination. Immature and in vitro-matured oocytes and embryos at the 2-cell, 4-cell, 8- to 16-cell, morula, and blastocyst stages were examined for the presence of NOS isoforms by indirect immunofluorescence staining using epifluorescence microscopy and RT-PCR. Each experiment was repeated in triplicate, and data were analysed using one-way ANOVA, after arcsine transformation of percentage values. Expression of all 3 NOS isoforms was detected inside the cytoplasm, in all the stages of oocytes and embryos examined, by both immunofluorescence and RT-PCR. Abundance of the iNOS transcript was significantly higher (P ≤ 0.01) in the morula and blastocyst stages compared with that in immature and in vitro-matured oocytes and in embryos at the 2-cell, 4-cell, and 8- to 16-cell stages, indicating that its expression was up-regulated at the 8- to 16-cell stage. The expression of eNOS was significantly higher (P ≤ 0.05) in the immature and mature oocytes and in 8- to 16-cell stage embryos, morulae, and blastocysts than in the early-cleavage embryos at the 2- and 4-cell stages, indicating that it was down-regulated after fertilization and was up-regulated again at the 8- to 16-cell stage. Abundance of the nNOS transcript was not significantly different among all the stages of oocytes and embryos examined. These results demonstrate that different NOS isoforms are expressed in a dynamic manner during embryonic development in the buffalo. The role of an increase in expression of iNOS and eNOS at the 8- to 16-cell stage, at which a developmental block occurs in this species, needs to be examined.


2010 ◽  
Vol 22 (1) ◽  
pp. 184
Author(s):  
A. Gambini ◽  
J. Jarazo ◽  
R. Olivera ◽  
D. Salamone

The availability of viable equine oocytes is a limiting factor on in vitro embryo production; therefore, it is necessary to assess some of the variables that affect oocyte viability. The aim of our study was to evaluate one of those variables: the effect of time between the collection of the ovary and oocyte in vitro maturation. Ovaries of slaughtered mares were collected during the breeding season (Argentine, Southern hemisphere). They were separated in bags every half hour and treated separately after arriving at the laboratory. COCs were recovered by a combination of scraping and washing of all visible follicles with a syringe filled with DMEM supplemented with 1 mM sodium pyruvate and 15 IU mL-1 heparin. COCs were matured for 24 to 26 h in 3 groups, according to time interval: 4 to 7 (group I), 7 to 10 (II), and 10 to 12 (III) hours. The medium for maturation was TCM-199 supplemented with 10% fetal bovine serum (FBS), 1 μL mL-1 insulin-transferrin-selenium, 1 mM sodium pyruvate, 100 mM cysteamine, and 0.1 mg mL-1 of FSH at 39°C in a humidified atmosphere of 5% CO2 in air. The cumulus was removed by a trypsin treatment and vortexing in hyaluronidase (1 mg mL-1). Cloning and fusion procedures were performed following the zona-free technique described by Lagutina et al. (2007 Theriogenology 67, 90-98). Two experiments were carried out by using different activation protocols. In experiment 1, the activation process was 22 mM ionomycin in H-TALP for 4 min followed by 3h culture in 1.9 mM 6-DMAP in SOF, whereas in experiment 2, we used 8.7 mM ionomycin in H-TALP for 4 min followed by 4 h culture in 1 mM 6-DMAP and 10 mg mL-1 cycloheximide in SOF. Embryos were cultured in wells of well (WOW) system. Half of the medium was renewed on Day 3 with fresh SOF and on Day 5 with DMEM/F12 with 10% FBS. Cleavage was assessed 48 h after activation; the rate of blastocyst formation was recorded at Days 8 and 9. Results were compared using chi-square test (P < 0.05). In experiment 1, maturation rates were significantly different between group I (n = 135, 54.1%) and III (n = 94, 40.4%), group II did not differ from them (n = 138, 53%). Cleavage rates differed statistically between II (n = 44, 75%) and III (n = 27, 40.7%), but not with group I (n = 53, 98%). No significant differences were found in blastocyst development; however, we observed a certain tendency towards an increase in the blastocyst rate as the time interval was lower (I: 3/53, 5.7%; II: 1/44, 2.3%; III: 0/27, 0%). In experiment 2, there were no significant differences between group I and II in rates of maturation (n = 56, 59% v. n = 111, 44.5%), cleavage (n = 22, 91% v. n = 34, 82%) or blastocyst rates (1/22, 4.5% v. 7/34, 20.6%). We conclude that cloned equine embryo development, using the two activation protocols tested, is not affected when the time interval between ovary collection and oocyte IVM is within 4 to 10 h.


2012 ◽  
Vol 24 (1) ◽  
pp. 135 ◽  
Author(s):  
J. R. Prentice ◽  
J. Singh ◽  
M. Anzar

Vitrification is a rapid freezing method in which cells/tissues are frozen in a glass state without ice crystal formation. However, vitrification of bovine oocytes is challenging due to their complex structure and sensitivity to chilling. Oocytes at the germinal vesicle (GV) stage of maturation are thought to be less prone to chromosomal and microtubular damage during cryopreservation because no spindle is present and genetic material is contained within the nucleus. However, immature oocytes are thought to be more sensitive to osmotic stress and have lower cell membrane stability than mature, metaphase II (MII) stage oocytes. The present studies aimed to validate the in vitro culture system used in our laboratory and to evaluate the effect of vitrification of bovine cumulus-oocyte complexes (COC) at different meiotic stages on their in vitro maturation (IVM), cleavage and early embryo development. Analyses were conducted on each dataset with PROC GLIMMIX in SAS using binary distribution (for yes/no response variable) and considering replicate as a random factor. In Experiment 1, meiotic progression of oocytes was evaluated at different time intervals during IVM. The following COC stages were predominantly found at different IVM time intervals: GV (89%) at 0 h, GV (47%) and germinal vesicle breakdown (GVBD; 44%) at 6 h, metaphase I (MI; 90%) at 12 h and MII (84%) at 22 h (n > 62 oocytes at each time group). In Experiment 2, bovine COC at 0, 6, 12 and 22 h of IVM were exposed to vitrification solution (15% dimethyl sulfoxide + 15% ethylene glycol + 0.5 M sucrose + 20% CS in TCM-199), loaded onto a cryotop device and vitrified by plunging in liquid nitrogen. Following warming (1 min in 0.5 M sucrose + 20% CS in TCM-199), COC completed 22 h of IVM and the nuclear stage was evaluated with lamin A/C-4′6-diamidino-2-phenylindole staining. Upon completion of 22 h of IVM, 23, 23, 35 and 89% of oocytes from 0-, 6-, 12- and 22-h groups, respectively were detected at MII (P < 0.0001). In Experiment 3, cleavage and embryo development of oocytes vitrified at 0, 12 and 22 h of IVM were evaluated. The cleavage rate did not differ among vitrification groups (i.e. 14% at 0 h, 17% at 12 h and 14% at 22 h; P = 0.825). Cleavage and blastocyst rates were higher (P < 0.0001) in the non-vitrified (control) group than in vitrified groups (i.e. 73 vs 15% and 22 vs 0.3%, respectively). In conclusion, the maturation kinetics validated our in vitro culture system and vitrification adversely affected the ability of bovine oocytes to undergo in vitro maturation to the MII stage, in vitro fertilization and early embryo development. Vitrification of oocytes at GV, MI and MII stages of nuclear maturation did not differ in their subsequent survivability. This study was supported by the Canadian Animal Genetic Resources Program, Agriculture and Agri-Food Canada.


2005 ◽  
Vol 17 (9) ◽  
pp. 91
Author(s):  
K. M. Banwell ◽  
M. Lane ◽  
D. L. Russell ◽  
K. L. Kind ◽  
J. G. Thompson

Follicular antral oxygen tension is thought to influence subsequent oocyte developmental competence. Despite this, in vitro maturation (IVM) is routinely performed in either 5 or 20% O2 and while low O2 has been shown to be beneficial to embryo development in many species, the effect of altering O2 concentration during IVM has not been adequately investigated. Here we investigated the effects of a range of O2 concentrations during IVM on meiotic maturation and subsequent embryo development after IVF. Ovaries from eCG-stimulated CBA F1 female mice (21 days) were collected and intact cumulus oocyte complexes (COCs) cultured for 17–18 h under 2, 5, 10 or 20% O2 (6% CO2 and balance of N2). Matured COCs were denuded of cumulus cells, fixed and stained (1% aceto-orcein) for visualisation of maturation status. No significant difference in maturation rates between treatment groups was observed. Following IVF (performed under 5% O2, 6% CO2 and balance of N2), no difference in fertilisation rates between treatment groups was observed in a randomly selected cohort 7 h post-fertilisation. There was also no significant difference in cleavage rates after 24 h or ability to reach blastocyst stage after 96 h, with a tendency (P = 0.079) for more blastocysts in 2% O2. However there was a significant increase in the number of trophectoderm cells present in the resulting blastocysts (P < 0.05) in the 2% O2 group (35 ± 2.1) compared to 20% O2 (25 ± 2.8). Our data suggests that O2 concentration during IVM does not influence nuclear maturation or subsequent fertilisation, cleavage and blastocyst development rates. However, maturation in 2% O2 significantly alters subsequent cell lineage within blastocysts to favour trophectoderm development. Such skewed trophectoderm cell number may influence embryo viability. Funded by NHMRC and NIH.


Sign in / Sign up

Export Citation Format

Share Document