Extensions of the general polar value based control point specification method in constructing tensor product B-spline surfaces

2000 ◽  
Vol 24 (4) ◽  
pp. 493-507
Author(s):  
Stephen Wang-Cheung Lam
Author(s):  
Felix Müller ◽  
Stefan Schumann ◽  
Berthold Schlecht

AbstractMore and more simulation tools are being used in the development of gears in order to save development time and costs while improving the gears. BECAL is a comprehensive software tool for the tooth contact analysis (TCA) of bevel, hypoid, beveloid and spur gears. The gear geometry is provided by a manufacturing simulation or a geometry import. To determine the exact contact conditions in the TCA, the discrete flank points are converted into a continuous and differentiable surface representation. At present, it is an approximation by means of Bézier tensor product surfaces. With this surface representation, significant deviations to the target points can occur depending on the tooth geometry. In particular tip, root and end relief, strongly curved tooth root geometries or discontinuous topological measurement data due to e.g. micro-pitting can only be considered insufficiently.Hence, a new method for surface approximation with non-uniform rational b‑spline surfaces (NURBS) is presented. Its application can significantly improve the surface representation compared to the target geometry, leading to more realistic results regarding contact stress, tooth root stress and transmission error. To illustrate the advantages, NURBS-based surfaces are compared with the Bézier tensor product surfaces. Finally, the potential of the new approach regarding the prediction of lifetime and acoustics is demonstrated by application to different gear geometries.


1985 ◽  
Vol 2 (1-3) ◽  
pp. 133-139 ◽  
Author(s):  
T. Lyche ◽  
E. Cohen ◽  
K. Mørken

2021 ◽  
Vol 13 (18) ◽  
pp. 3551
Author(s):  
Corinna Harmening ◽  
Christoph Hobmaier ◽  
Hans Neuner

Due to the increased use of areal measurement techniques, such as laser scanning in geodetic monitoring tasks, areal analysis strategies have considerably gained in importance over the last decade. Although a variety of approaches that quasi-continuously model deformations are already proposed in the literature, there are still a multitude of challenges to solve. One of the major interests of engineering geodesy within monitoring tasks is the detection of absolute distortions with respect to a stable reference frame. Determining distortions and simultaneously establishing the joint geodetic datum can be realised by modelling the differences between point clouds acquired in different measuring epochs by means of a rigid body movement that is superimposed by distortions. In a previous study, we discussed the possibility of estimating these rigid body movements from the control points of B-spline surfaces approximating the acquired point clouds. Alternatively, we focus on estimating them by means of constructed points on B-spline surfaces in this study. This strategy has the advantage of larger redundancy compared to the control point–based strategy. Furthermore, the strategy introduced allows for the detection of rigid body movements between point clouds of different epochs and for the simultaneous localisation of areas in which the rigid body movement is superimposed by distortions. The developed approach is based on B-spline models of epoch-wise acquired point clouds, the surface parameters of which define point correspondences on different B-spline surfaces. Using these point correspondences, a RANSAC-approach is used to robustly estimate the parameters of the rigid body movement. The resulting consensus set initially defines the non-distorted areas of the object under investigation, which are extended and statistically verified in a second step. The developed approach is applied to simulated data sets, revealing that distorted areas can be reliably detected and that the parameters of the rigid body movement can be precisely and accurately determined by means of the strategy.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yeqing Yi ◽  
Zixuan Tang ◽  
Chengzhi Liu

In order to improve the computational efficiency of data interpolation, we study the progressive iterative approximation (PIA) for tensor product extended cubic uniform B-spline surfaces. By solving the optimal shape parameters, we can minimize the spectral radius of PIA’s iteration matrix, and hence the convergence rate of PIA is accelerated. Stated numerical examples show that the optimal shape parameters make the PIA have the fastest convergence rate.


Author(s):  
Joanna M. Brown ◽  
Malcolm I. G. Bloor ◽  
M. Susan Bloor ◽  
Michael J. Wilson

Abstract A PDE surface is generated by solving partial differential equations subject to boundary conditions. To obtain an approximation of the PDE surface in the form of a B-spline surface the finite element method, with the basis formed from B-spline basis functions, can be used to solve the equations. The procedure is simplest when uniform B-splines are used, but it is also feasible, and in some cases desirable, to use non-uniform B-splines. It will also be shown that it is possible, if required, to modify the non-uniform B-spline approximation in a variety of ways, using the properties of B-spline surfaces.


Sign in / Sign up

Export Citation Format

Share Document