Smallest second-order derivatives for efficient volume-data representation

2002 ◽  
Vol 26 (2) ◽  
pp. 229-238 ◽  
Author(s):  
Jiřı́ Hladůvka ◽  
Eduard Gröller
2003 ◽  
Vol 14 (3) ◽  
pp. 233-254 ◽  
Author(s):  
Shih-Kuan Liao ◽  
Chin-Feng Lin ◽  
Yeh-Ching Chung ◽  
Jim Z.C Lai

2000 ◽  
Vol 4 (4) ◽  
pp. 21-43
Author(s):  
Pheng-Ann Heng ◽  
Ping-Fu Fung ◽  
Kwong-Sak Leung ◽  
Han-Qiu Sun ◽  
Tien-Tsin Wong

Patients potentially suffer and are exposed to danger during invasive bronchoscopic diagnosis and surgery. In order to reduce this hazardous risk, we have developed an interactive virtual environment for the simulation of bronchoscopy (in short, called "virtual bronchoscopy"). Because of this state-of-the-art application, medical doctors can now obtain pre-operative information and perform pilot examinations in a virtual environment without any invasive or needless surgery. This 3D lung volume data of the patient is first acquired from CT and/or MRI scanning, without any pain being inflicted upon the patient. Then a vessel-tracking process is used to extract the patient's bronchial tree from the data. It is important to note that while manual tracking is tedious and labor-intensive, fully automatic tracking may not be as reliable in such a critical medical application. Thus a semi-automatic tracking technique called the Intelligent Path Tracker, which provides automation and sufficient user control during the tracking process, is most useful. This methodology is applied to a virtual bronchoscopy session, where doctors can use a 3D pen input device to navigate and visualize the bronchial tree of patients in a natural and interactive manner. To support an interactive frame rate, we also propose a new volume rendering acceleration technique, named IsoRegion Leaping. Through this technique visualization is further accelerated using a distributed rendering process based upon a TCP/IP network of low-cost PCs. Combining these approaches enables a 256x256x256 volumetric data representation of a human lung to be navigated and visualized at a frame rate of over 10 Hz in our virtual bronchoscopy system.


Author(s):  
W. L. Bell

Disappearance voltages for second order reflections can be determined experimentally in a variety of ways. The more subjective methods, such as Kikuchi line disappearance and bend contour imaging, involve comparing a series of diffraction patterns or micrographs taken at intervals throughout the disappearance range and selecting that voltage which gives the strongest disappearance effect. The estimated accuracies of these methods are both to within 10 kV, or about 2-4%, of the true disappearance voltage, which is quite sufficient for using these voltages in further calculations. However, it is the necessity of determining this information by comparisons of exposed plates rather than while operating the microscope that detracts from the immediate usefulness of these methods if there is reason to perform experiments at an unknown disappearance voltage.The convergent beam technique for determining the disappearance voltage has been found to be a highly objective method when it is applicable, i.e. when reasonable crystal perfection exists and an area of uniform thickness can be found. The criterion for determining this voltage is that the central maximum disappear from the rocking curve for the second order spot.


Sign in / Sign up

Export Citation Format

Share Document