A differential volume rendering method with second-order difference for time-varying volume data

2003 ◽  
Vol 14 (3) ◽  
pp. 233-254 ◽  
Author(s):  
Shih-Kuan Liao ◽  
Chin-Feng Lin ◽  
Yeh-Ching Chung ◽  
Jim Z.C Lai
2015 ◽  
Vol 18 (2) ◽  
pp. 147-157 ◽  
Author(s):  
Zhi-yu Ding ◽  
Jian-gang Tan ◽  
Xiang-yang Wu ◽  
Wei-feng Chen ◽  
Fei-ran Wu ◽  
...  

Author(s):  
Toshiyuki Tanaka ◽  
Chikara Sato

Abstract This paper deals with the stability of the second order difference equation possessing periodic parameter, which characterizes discrete periodic system. Discrete periodic system corresponding to Mathieu equation is expressed as second order difference equation with small parameter ε in the time-varying term. This parameter ε plays an important role in stability. For the fundamental equation without damping, stability boundary curves are analytically obtained with respect to parameters in the equation by using McLachlan’s method, which is based on Floquet’s theory and perturbation method. The boundary curves are computed by pursuing periodic solutions on the boundaries and letting secular term zero. The boundary curves are expressed as the power series of ε. When periodic parameter consists of even function of Fourier series, stability boundary curves are obtained. For the fundamental equation with damping, stability criterion is shown in the neighbor of important resonant points. This criterion is obtained by computing points on the boundary curves.


2021 ◽  
Vol 13 (11) ◽  
pp. 2078
Author(s):  
Ning Liu ◽  
Qin Zhang ◽  
Shuangcheng Zhang ◽  
Xiaoli Wu

Real-time cycle slip detection and repair is one of the key issues in global positioning system (GPS) high precision data processing and application. In particular, when GPS stations are in special environments, such as strong ionospheric disturbance, sea, and high-voltage transmission line interference, cycle slip detection and repair in low elevation GPS observation data are more complicated than those in normal environments. For low elevation GPS undifferenced carrier phase data in different environments, a combined cycle slip detection algorithm is proposed. This method uses the first-order Gauss–Markov stochastic process to model the pseudorange multipath in the wide-lane phase minus narrow-lane pseudorange observation equation, and establishes the state equation of the wide-lane ambiguity with the pseudorange multipath as a parameter, and it uses the Kalman filter for real-time estimation and detects cycle slips based on statistical hypothesis testing with a predicted residual sequence. Meanwhile, considering there are certain correlations among low elevation, observation epoch interval, and ionospheric delay error, a second-order difference geometry-free combination cycle slip test is constructed that takes into account the elevation. By combining the two methods, real-time cycle slip detection for GPS low elevation satellite undifferenced data is achieved. A cycle slip repair method based on spatial search and objective function minimization criterion is further proposed to determine the correct solution of the cycle slips after they are detected. The whole algorithm is experimentally verified using the static and kinematic measured data of low elevation satellites under four different environments: normal condition, high-voltage transmission lines, dynamic condition in the sea, and ionospheric disturbances. The experimental results show that the algorithm can detect and repair cycle slips accurately for low elevation GPS undifferenced data, the difference between the float solution and the true value for the cycle slip does not exceed 0.5 cycle, and the differences obey the normal distribution overall. At the same time, the wide-lane ambiguity and second-order difference GF combination sequence calculated by the algorithm is smoother, which give further evidence that the algorithm for cycle slip detection and repair is feasible and effective, and has the advantage of being immune to the special observation environments.


Author(s):  
Robert Stegliński

AbstractIn this work, we establish optimal Lyapunov-type inequalities for the second-order difference equation with p-Laplacian $$\begin{aligned} \Delta (\left| \Delta u(k-1)\right| ^{p-2}\Delta u(k-1))+a(k)\left| u(k)\right| ^{p-2}u(k)=0 \end{aligned}$$ Δ ( Δ u ( k - 1 ) p - 2 Δ u ( k - 1 ) ) + a ( k ) u ( k ) p - 2 u ( k ) = 0 with Dirichlet, Neumann, mixed, periodic and anti-periodic boundary conditions.


2002 ◽  
Vol 26 (2) ◽  
pp. 229-238 ◽  
Author(s):  
Jiřı́ Hladůvka ◽  
Eduard Gröller

Sign in / Sign up

Export Citation Format

Share Document