03/02497 Experimental and numerical study on the combustion characteristics of partially premixed charge compression ignition engine with dual fuel

2003 ◽  
Vol 44 (6) ◽  
pp. 402
Author(s):  
Dae Sik Kim ◽  
Ki Hyung Lee ◽  
Chang Sik Lee

The objective of this work is to investigate the effect of premixed fuel ratio on the combustion and emission characteristics in diesel engine by the experimental and numerical method. In order to investigate the effect of various factors such as the mixing ratio, EGR rate, and engine load on the exhaust emissions from the premixed charge compression ignition diesel engine, the injection amount of premixed fuel is controlled by electronic port injection system. The range of mixing ratio between dual fuels used in this study is between 0 and 0.85, and the exhaust gas is recirclulated until 30 percent of EGR rate.


Author(s):  
M Yao ◽  
J Qin ◽  
Z Zheng

A numerical study was carried out using a zero-dimensional detailed chemical kinetics model to investigate the chemical reaction phenomena encountered in the homogeneous charge compression ignition process of a dimethyl ether (DME) and methane dual-fuel mixture. The results show that the heat release of DME/methane dual-fuel combustion is a typical two-stage process: the first stage is mainly associated with DME oxidation, and the second is mainly the result of methane oxidation. The low-temperature reaction (LTR) of DME is inhibited, the second molecular oxygen addition of DME is restrained, and β-scission plays a dominant role in DME oxidation. Therefore, methane changes the paths of the LTR of DME. Most of the formaldehyde (CH2O) is produced from H abstraction of methoxy (CH3O) rather than from the LTR of the DME. The heat release by DME oxidation and the existence of H2O2 generated by DME oxidation make methane oxidation occur at a low initial temperature. However, methane oxidation also promotes hot flame reactions of DME. During the second stage of heat release, OH is produced in many different ways rather than only by way of H2O2 decomposing in neat DME oxidation; this results in higher OH mole fraction when dual fuel is used compared with DME alone. Finally, the major paths of the DME/methane HCCI reactions occurring in the engine cylinder are clarified.


2021 ◽  
pp. 146808742110183
Author(s):  
Jonathan Martin ◽  
André Boehman

Compression-ignition (CI) engines can produce higher thermal efficiency (TE) and thus lower carbon dioxide (CO2) emissions than spark-ignition (SI) engines. Unfortunately, the overall fuel economy of CI engine vehicles is limited by their emissions of nitrogen oxides (NOx) and soot, which must be mitigated with costly, resource- and energy-intensive aftertreatment. NOx and soot could also be mitigated by adding premixed gasoline to complement the conventional, non-premixed direct injection (DI) of diesel fuel in CI engines. Several such “dual-fuel” combustion modes have been introduced in recent years, but these modes are usually studied individually at discrete conditions. This paper introduces a mapping system for dual-fuel CI modes that links together several previously studied modes across a continuous two-dimensional diagram. This system includes the conventional diesel combustion (CDC) and conventional dual-fuel (CDF) modes; the well-explored advanced combustion modes of HCCI, RCCI, PCCI, and PPCI; and a previously discovered but relatively unexplored combustion mode that is herein titled “Piston-split Dual-Fuel Combustion” or PDFC. Tests show that dual-fuel CI engines can simultaneously increase TE and lower NOx and/or soot emissions at high loads through the use of Partial HCCI (PHCCI). At low loads, PHCCI is not possible, but either PDFC or RCCI can be used to further improve NOx and/or soot emissions, albeit at slightly lower TE. These results lead to a “partial dual-fuel” multi-mode strategy of PHCCI at high loads and CDC at low loads, linked together by PDFC. Drive cycle simulations show that this strategy, when tuned to balance NOx and soot reductions, can reduce engine-out CO2 emissions by about 1% while reducing NOx and soot by about 20% each with respect to CDC. This increases emissions of unburnt hydrocarbons (UHC), still in a treatable range (2.0 g/kWh) but five times as high as CDC, requiring changes in aftertreatment strategy.


2016 ◽  
Author(s):  
Henrique Dornelles ◽  
Jácson Antolini ◽  
Rafael Sari ◽  
Macklini Dalla Nora ◽  
Paulo Romeu Machado ◽  
...  

2014 ◽  
Vol 18 (1) ◽  
pp. 205-216 ◽  
Author(s):  
Wojciech Tutak ◽  
Arkadiusz Jamrozik

The results of gasification process of dried sewage sludge and use of generator gas as a fuel for dual fuel turbocharged compression ignition engine are presented. The results of gasifying showed that during gasification of sewage sludge is possible to obtain generator gas of a calorific value in the range of 2.15 ? 2.59 MJ/m3. It turned out that the generator gas can be effectively used as a fuel to the compression ignition engine. Because of gas composition, it was possible to run engine with partload conditions. In dual fuel operation the high value of indicated efficiency was achieved equal to 35%, so better than the efficiency of 30% attainable when being fed with 100% liquid fuel. The dual fuel engine version developed within the project can be recommended to be used in practice in a dried sewage sludge gasification plant as a dual fuel engine driving the electric generator loaded with the active electric power limited to 40 kW (which accounts for approx. 50% of its rated power), because it is at this power that the optimal conditions of operation of an engine dual fuel powered by liquid fuel and generator gas are achieved. An additional advantage is the utilization of waste generated in the wastewater treatment plant.


Sign in / Sign up

Export Citation Format

Share Document