98/00599 Modelling and simulation of combined gas turbine engine and heat pipe system for waste heat recovery and utilization

1998 ◽  
Vol 39 (1) ◽  
pp. 51
Author(s):  
Francis A. Di Bella

This presentation will discuss the results of the feasibility analysis of a Brayton cycle-based, supercritical CO2 system that recovers waste heat from an MT30 gas turbine used in marine applications. The analysis also included the use of thermoelectric generator (TEG) devices that are one of several direct energy conversion methods known to be applicable to waste heat recovery. The analysis was conducted by Concepts NREC, in collaboration with the Maine Maritime Academy and their principal consultant, Thermoelectric Power Systems, LLC. The feasibility analysis was conducted under Navy SBIR Proposal Number N103-229-0533, entitled “Gas Turbine Engine Exhaust Waste Heat Recovery Shipboard Module Development”. The objective of the project was to improve the energy efficiency of the MT30 prime-mover power system for the Navy and other commercial vessels. The performance goal for the energy recovery system was to improve the fuel economy of the prime mover by 20% when significantly part-loaded.


Author(s):  
T. E. Graf ◽  
J. E. Nagengast

The DD-963 Class ships are the first U.S. Navy vessels to utilize a waste heat recovery system on a gas turbine engine. This paper will present the experience gained from the three years of shipboard operation with the system. The experience will be used to develop areas for consideration that can improve the probability of success in future system procurements. The areas to be considered are: (a) the need for definitive military specifications; (b) the need to test at Navy laboratories and (c) the need to test complete systems under simulated shipboard conditions.


2019 ◽  
Author(s):  
Sakil Hossen ◽  
AKM M. Morshed ◽  
Amitav Tikadar ◽  
Azzam S. Salman ◽  
Titan C. Paul

2007 ◽  
Vol 2 (3) ◽  
pp. 86-95
Author(s):  
R. Sudhakaran ◽  
◽  
V. Sella Durai ◽  
T. Kannan ◽  
P.S. Sivasakthievel ◽  
...  

2021 ◽  
Vol 198 ◽  
pp. 117515
Author(s):  
Chendi Yang ◽  
Yuanyuan Deng ◽  
Ning Zhang ◽  
Xiaopeng Zhang ◽  
Gaohong He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document