Managing the health effects of climate change

The Lancet ◽  
2009 ◽  
Vol 373 (9676) ◽  
pp. 1693-1733 ◽  
Author(s):  
Anthony Costello ◽  
Mustafa Abbas ◽  
Adriana Allen ◽  
Sarah Ball ◽  
Sarah Bell ◽  
...  
BMJ ◽  
2011 ◽  
Vol 342 (mar01 2) ◽  
pp. d1339-d1339 ◽  
Author(s):  
G. Watts

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Arefeh Mousavi ◽  
Ali Ardalan ◽  
Amirhossein Takian ◽  
Abbas Ostadtaghizadeh ◽  
Kazem Naddafi ◽  
...  

Abstract Background Ensuring public health is crucial in any policy debate on climate change. Paris Agreement on climate change is a global contract, through which countries have committed themselves to a public health treaty. The agreement has laid the foundation for mitigation and adaptation. This study was conducted to provide an evidence-based framework for policy-making in the health system of Iran in order to reduce the adverse effects of climate change on public health and to increase the adaptation of the health system as a result. Methods This is a qualitative study. We first used Delphi method to extract the components of Paris Agreement on climate change that were related to the functions and policymaking of health system in Iran. Twenty-three experts in health and climate change were identified purposefully and through snowball sampling as participants in Delphi. Data collection instrument was a structured questionnaire. We used SPSS software version 25 for data analysis based on the descriptive indices including the mean, the percentage of consensus above 75%, and the Kendall coordination coefficient. Results Seventy-nine components classified within nine categories were extracted. The most important examples of the implementation of Paris Agreement on climate change in the health system of Iran were: participation in the formulation of strategies for mitigation and adaptation, identifying vulnerable groups, assessing vulnerability, increasing the capacity of health services delivery during extreme events, using early warning systems, using new technologies to increase the adaptation, evaluation of interventions, financial support, increasing the number of researches, increasing the knowledge and skills of staff, and finally public awareness. Conclusions Evidence-based policy-making is pivotal to develop effective programs to control the health effects of climate change. This research provided policy translation and customization of micro and macro provisions of Paris Agreement on climate change, in line with the political context of health system in Iran. Our finding will pave the ground, we envisage, for further steps towards capacity building and enhancement of resiliency of the health system, adaptation interventions, and evaluation, identification of barriers and facilitators for adaptation and decreasing the adverse health effects caused by the climate change, in Iran and perhaps beyond.


2019 ◽  
Vol 76 (Suppl 1) ◽  
pp. A73.2-A73
Author(s):  
Matthias Otto ◽  
Tord Kjellstrom ◽  
Bruno Lemke

Exposure to extreme heat negatively affects occupational health. Heat stress indices like Wet Bulb Globe Temperature (WBGT) combine temperature and humidity and allow quantifying the climatic impact on human physiology and clinical health. Multi-day periods of high heat stress (aka. heat waves) affect occupational health and productivity independently from the absolute temperature levels; e.g. well-documented heat-waves in Europe caused disruption, hospitalisations and deaths (2003 French heat wave: more than 1000 extra deaths, 15–65 years, mainly men) even though the temperatures were within the normal range of hotter countries.Climate change is likely to increase frequency and severity of periods of high heat stress. However, current global grid-cell based climate models are not designed to predict heat waves, neither in terms of severity or frequency.By analysing 37 years of historic daily heat index data from almost 5000 global weather stations and comparing them to widely used grid-cell based climate model outputs over the same period, our research explores methods to assess the frequency and intensity of heat waves as well as the associated occupational health effects at any location around the world in the future.Weather station temperature extreme values (WBGT) for the 3 hottest days in 30 years exceed the mean WBGT of the hottest month calculated from climate models in the same grid-cell by about 2 degrees in the tropics but by 10 degrees at higher latitudes in temperate climate regions.Our model based on the relationship between actual recorded periods of elevated heat-stress and grid-cell based climate projections, in combination with population and employment projections, can quantify national and regional productivity loss and health effects with greater certainty than is currently the case.


Sign in / Sign up

Export Citation Format

Share Document