Tissue distribution of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the adult Eastern oyster (Crassostrea virginica, Gmelin) and its effect on egg and larval survival

2000 ◽  
Vol 50 (1-5) ◽  
pp. 245-246
Author(s):  
M.L. Wintermyer ◽  
K.R. Cooper
Author(s):  
Jeff C Clements ◽  
Claire E Carver ◽  
Martin A Mallet ◽  
Luc A Comeau ◽  
André L Mallet

Abstract In North America, studies regarding effects of CO2-induced low pH in bivalve aquaculture are largely restricted to the US Pacific coast. Studies on species from the northwest Atlantic are lacking. Furthermore, information on the roles of intergenerational exposure and biological sex in bivalve responses to low pH, particularly in an aquaculture-specific context, is scant. We tested if short-term (1 month) exposure to CO2-induced reductions in pHNBS affected the reproductive development of male and female eastern oysters (Crassostrea virginica) during hatchery-specific reproductive conditioning and whether maternal and/or paternal exposure influenced larval responses. Reduced pH (7.5–7.7) increased the rate of reproductive development in both males and females. There was no indication of intergenerational effects; adult pH conditions did not affect early larval development. In contrast, low pH conditions experienced by gametes during spawning, fertilization, and embryo incubation (48 h) resulted in higher larval survival (+6–8% from control), reduced shell height (−2 to 3 µm), and increased deformities (abnormal shell shape; +3–5%). We suggest that local adaptation to acidic land runoff may account for the positive effects of low pH observed in this study. Bioeconomic assessments are now needed to understand the implications of reduced pH on aquaculture operations in these regions of Atlantic Canada.


2020 ◽  
Vol 640 ◽  
pp. 79-105
Author(s):  
ET Porter ◽  
E Robins ◽  
S Davis ◽  
R Lacouture ◽  
JC Cornwell

Anthropogenic disturbances in the Chesapeake Bay (USA) have depleted eastern oyster Crassostrea virginica abundance and altered the estuary’s environment and water quality. Efforts to rehabilitate oyster populations are underway; however, the effect of oyster biodeposits on water quality and plankton community structure are not clear. In July 2017, we used 6 shear turbulence resuspension mesocosms (STURMs) to determine differences in plankton composition with and without the daily addition of oyster biodeposits to a muddy sediment bottom. STURM systems had a volume-weighted root mean square turbulent velocity of 1.08 cm s-1, energy dissipation rate of ~0.08 cm2 s-3, and bottom shear stress of ~0.36-0.51 Pa during mixing-on periods during 4 wk of tidal resuspension. Phytoplankton increased their chlorophyll a content in their cells in response to low light in tanks with biodeposits. The diatom Skeletonema costatum bloomed and had significantly longer chains in tanks without biodeposits. These tanks also had significantly lower concentrations of total suspended solids, zooplankton carbon, and nitrite +nitrate, and higher phytoplankton carbon concentrations. Results suggest that the absence of biodeposit resuspension initiates nitrogen uptake for diatom reproduction, increasing the cell densities of S. costatum. The low abundance of the zooplankton population in non-biodeposit tanks suggests an inability of zooplankton to graze on S. costatum and negative effects of S. costatum on zooplankton. A high abundance of the copepod Acartia tonsa in biodeposit tanks may have reduced S. costatum chain length. Oyster biodeposit addition and resuspension efficiently transferred phytoplankton carbon to zooplankton carbon, thus supporting the food web in the estuary.


Author(s):  
Kevin M. Johnson ◽  
Hollis R. Jones ◽  
Sandra M. Casas ◽  
Jerome F. La Peyre ◽  
Morgan W. Kelly

Aquaculture ◽  
2020 ◽  
Vol 529 ◽  
pp. 735649
Author(s):  
Alexandra J. McCarty ◽  
K. McFarland ◽  
J. Small ◽  
S.K. Allen ◽  
L.V. Plough

Sign in / Sign up

Export Citation Format

Share Document