Direct numerical simulations of heat transfer by solid particles suspended in homogeneous isotropic turbulence

1998 ◽  
Vol 19 (2) ◽  
pp. 187-192 ◽  
Author(s):  
Yohei Sato ◽  
Emmanuel Deutsch ◽  
Olivier Simonin
Author(s):  
M. Ernst ◽  
M. Sommerfeld

Direct numerical simulations of particle-laden homogeneous isotropic turbulence are performed to characterize the collision rate as a function of different particle properties. The fluid behaviour is computed using a three-dimensional Lattice Boltzmann Method including a spectral forcing scheme to generate the turbulence field. Under assumption of mass points, the transport of spherical particles is modelled in a Lagrangian frame of reference. In the simulations the influence of the particle phase on the fluid flow is neglected. The detection and performance of inelastic interparticle collisions are based on a deterministic collision model. Different studies with monodisperse particles are considered. According to the executed simulations, particles with small Stokes number possess a collision rate similar to the prediction of Saffman and Turner [1], whereas particles with larger Stokes numbers behave similarly to the theory of Abrahamson [2].


2012 ◽  
Vol 707 ◽  
pp. 74-110 ◽  
Author(s):  
Krishnendu Sinha

AbstractInteraction of turbulent fluctuations with a shock wave plays an important role in many high-speed flow applications. This paper studies the amplification of enstrophy, defined as mean-square fluctuating vorticity, in homogeneous isotropic turbulence passing through a normal shock. Linearized Navier–Stokes equations written in a frame of reference attached to the unsteady shock wave are used to derive transport equations for the vorticity components. These are combined to obtain an equation that describes the evolution of enstrophy across a time-averaged shock wave. A budget of the enstrophy equation computed using results from linear interaction analysis and data from direct numerical simulations identifies the dominant physical mechanisms in the flow. Production due to mean flow compression and baroclinic torques are found to be the major contributors to the enstrophy amplification. Closure approximations are proposed for the unclosed correlations in the production and baroclinic source terms. The resulting model equation is integrated to obtain the enstrophy jump across a shock for a range of upstream Mach numbers. The model predictions are compared with linear theory results for varying levels of vortical and entropic fluctuations in the upstream flow. The enstrophy model is then cast in the form of$k$–$\epsilon $equations and used to compute the interaction of homogeneous isotropic turbulence with normal shocks. The results are compared with available data from direct numerical simulations. The equations are further used to propose a model for the amplification of turbulent viscosity across a shock, which is then applied to a canonical shock–boundary layer interaction. It is shown that the current model is a significant improvement over existing models, both for homogeneous isotropic turbulence and in the case of complex high-speed flows with shock waves.


1991 ◽  
Vol 226 ◽  
pp. 1-35 ◽  
Author(s):  
Kyle D. Squires ◽  
John K. Eaton

Measurements of heavy particle dispersion have been made using direct numerical simulations of isotropic turbulence. The parameters affecting the dispersion of solid particles, namely particle inertia and drift due to body forces were investigated separately. In agreement with the theoretical studies of Reeks, and Pismen & Nir, the effect of particle inertia is to increase the eddy diffusivity over that of the fluid (in the absence of particle drift). The increase in the eddy diffusivity of particles over that of the fluid was between 2 and 16%, in reasonable agreement with the increases reported in Reeks, and Pismen & Nir. The effect of a deterministic particle drift is shown to decrease unequally the dispersion in directions normal and parallel to the particle drift direction. Eddy diffusivities normal and parallel to particle drift are shown to be in good agreement with the predictions of Csanady and the experimental measurements of Wells & Stock.


2019 ◽  
Vol 867 ◽  
pp. 877-905
Author(s):  
B. J. Devenish ◽  
D. J. Thomson

We present an extension of Thomson’s (J. Fluid Mech., vol. 210, 1990, pp. 113–153) two-particle Lagrangian stochastic model that is constructed to be consistent with the $4/5$ law of turbulence. The rate of separation in the new model is reduced relative to the original model with zero skewness in the Eulerian longitudinal relative velocity distribution and is close to recent measurements from direct numerical simulations of homogeneous isotropic turbulence. The rate of separation in the equivalent backwards dispersion model is approximately a factor of 2.9 larger than the forwards dispersion model, a result that is consistent with previous work.


Sign in / Sign up

Export Citation Format

Share Document