Endothelial cell adhesion to the fibronectin CS5 domain in artificial extracellular matrix proteins

Biomaterials ◽  
2003 ◽  
Vol 24 (23) ◽  
pp. 4245-4252 ◽  
Author(s):  
S Heilshorn
Blood ◽  
1993 ◽  
Vol 82 (10) ◽  
pp. 3125-3132 ◽  
Author(s):  
LJ Bendall ◽  
K Kortlepel ◽  
DJ Gottlieb

Abstract Acute myeloid leukemia (AML) cells respond to exogenous stimulation from myeloid growth factors that may be secreted by cells of the bone marrow (BM) stroma and retained by glycosaminoglycans in the extracellular matrix. We have analyzed the capacity of malignant cells from patients with AML to maintain close proximity to sites of growth factor production and retention by binding to BM stromal elements, including fibroblasts and extracellular matrix proteins. Leukemic cells from all cases of AML adhered to BM fibroblast (BMF) monolayers (mean +/- standard error [SE] percentage binding, 30.9% +/- 2.5%; n = 23) and to fibronectin and laminin (mean +/- SE percentage binding, 28.0% +/- 4.1% [n = 11] and 21.5% +/- 2.3% [n = 8], respectively). Binding to bovine and human collagen type 1, vitronectin, hyaluronic acid, and albumin was minimal. Analysis of binding mechanisms indicated that very late antigen-4 (VLA-4) and VLA-5 were responsible for AML cell binding to fibronectin. Binding to laminin could be inhibited by antibody to the alpha chain of VLA-6. In contrast, AML cell adhesion to BMF monolayers was not impaired by blocking antibodies to either beta 1 or beta 2 integrins used alone, although the combination of anti-CD11/CD18 and anti-VLA-4 inhibited binding in more than 50% of cases. When anti- VLA-5 was added in these cases, mean +/- SE inhibition of binding of 45.5% +/- 9.1% (P < .001) was observed. Binding of AML cells to extracellular matrix proteins fibronectin and laminin is predominantly beta 1-integrin-dependent, but AML cell adhesion to BMF relies on the simultaneous involvement of beta 1 and beta 2 integrins as well as other currently unrecognized ligands.


2006 ◽  
Vol 99 (11) ◽  
pp. 1207-1215 ◽  
Author(s):  
Aurélie Cazes ◽  
Ariane Galaup ◽  
Clémence Chomel ◽  
Marine Bignon ◽  
Nicolas Bréchot ◽  
...  

Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 500-507 ◽  
Author(s):  
David Varon ◽  
Denise E. Jackson ◽  
Boris Shenkman ◽  
Rima Dardik ◽  
Ilya Tamarin ◽  
...  

Abstract Platelet/endothelial cell adhesion molecule-1 (PECAM-1) is a 130-kD member of the Ig gene superfamily that is expressed on the surface of circulating platelets, monocytes, neutrophils, and selective T-cell subsets. It is also a major component of the endothelial cell intercellular junction. Previous studies have shown that cross-linking PECAM-1 on the surface of leukocytes results in the activation of adhesion molecules of both the β1 and β2integrin family. In addition, the process of leukocyte transendothelial migration appears to be mediated, at least in part, by homophilic adhesive interactions that take place between leukocyte and endothelial cell junctional PECAM-1 molecules. However, little is known about the functional role of this membrane glycoprotein in human platelets. In the present study, we examined the effects of PECAM-1 engagement on integrin-mediated platelet-extracellular matrix or platelet-platelet interactions. Bivalent, but not monovalent, anti–PECAM-1 monoclonal antibodies (MoAbs) specific for membrane-proximal Ig-homology domain 6 significantly augmented platelet deposition (increased surface coverage) and aggregation (increased average size) onto extracellular matrix, under both oscillatory or defined low shear flow conditions (200 s−1) in a modified cone and plate viscometer. Moreover, bivalent anti-domain 6 MoAbs were capable of serving as costimulatory agonists to markedly enhance both adenosine diphosphate (ADP)- and platelet activating factor (PAF)-induced platelet aggregation responses. These antibodies appeared to act via outside-in signal transduction through PECAM-1, as evidenced by the fact that their binding (1) led to conformational changes in the αIIbβ3 integrin complex, (2) induced surface expression of P-selectin, and (3) resulted in the tyrosine phosphorylation of PECAM-1. Together, these data support a role for PECAM-1 in cellular activation and suggest that PECAM-1 may serve as a costimulatory agonist receptor capable of modulating integrin function in human platelets during adhesion and aggregation.


Oncogene ◽  
1997 ◽  
Vol 14 (16) ◽  
pp. 1933-1943 ◽  
Author(s):  
Paola Defilippi ◽  
Cristina Olivo ◽  
Guido Tarone ◽  
Patrizia Mancini ◽  
Maria Rosaria Torrisi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document