Granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor and macrophage colony-stimulating factor in the treatment of acute myeloid leukemia and acute lymphoblastic leukemia

1998 ◽  
Vol 22 (12) ◽  
pp. 1143-1154 ◽  
Author(s):  
Ryuzo Ohno
Blood ◽  
1991 ◽  
Vol 78 (5) ◽  
pp. 1190-1197 ◽  
Author(s):  
T Buchner ◽  
W Hiddemann ◽  
M Koenigsmann ◽  
M Zuhlsdorf ◽  
B Wormann ◽  
...  

Abstract To reduce critical neutropenia after chemotherapy (CT) for acute myeloid leukemia (AML) we administered recombinant human granulocyte- macrophage colony-stimulating factor (GM-CSF) to patients over the age of 65 years with newly diagnosed AML and to patients with early or second relapse. CT was 9-day 6-thioguanine, ara-C, and daunorubicin (TAD9) in newly diagnosed AML and sequential high-dose ara-C and mitoxantrone (S-HAM) for relapse. In patients whose bone marrow was free from blasts a continuous intravenous infusion of GM-CSF 250 micrograms/m2/d started on day 4 after CT. Thirty-six patients entered the study and 30 of them did receive GM-CSF. For comparison, a historical control group of 56 patients was used. Complete remission rate was 50% (18 of 36) versus 32% in controls (P = .09), and early death rate was 14% versus 39% (P = .009). Treatment with GM-CSF was not associated with major adverse events. Two patients showed a marked leukemic regrowth that was completely reversible in one patient and appeared to be GM-CSF independent in the other patient. Remission duration does not seem to be reduced after GM-CSF. Under GM-CSF the blood neutrophils recovered 6 and 9 days earlier in the TAD9 (P = .009) and S-HAM (P = .043) groups associated with a rapid clearance of infections in most patients. We conclude that GM-CSF was of therapeutic benefit to our patients and this provides a basis for larger controlled trials.


Blood ◽  
1990 ◽  
Vol 75 (9) ◽  
pp. 1766-1769
Author(s):  
EH Estey ◽  
D Dixon ◽  
HM Kantarjian ◽  
MJ Keating ◽  
K McCredie ◽  
...  

We administered recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) (120 micrograms/m2/d by continuous intravenous [IV] infusion) to 12 patients with newly diagnosed acute myeloid leukemia (AML) at relatively high risk of early death during remission induction. GM-CSF began 3 days after completion of induction chemotherapy (ara-C 1.5 g/m2 d x 4 days by continuous IV infusion after a 3 g/m2 bolus). Rates of fatal infection (42%), pneumonia and/or sepsis (83%), and CR (50%) did not differ significantly (P less than .05) from those observed after administration of the identical chemotherapy without GM-CSF to 53 historical controls with newly diagnosed AML at similarly high risk of early death. There were no significant differences between the GM-CSF-treated and the historical groups in the time required to reach neutrophil counts of 500 or 1,000/microL after administration of chemotherapy. Four patients died of infection before they could have benefited from the earliest recovery of neutrophil count observed in patients who entered CR. Growth of leukemia after GM-CSF administration was observed in only 1 of the 8 patients who survived long enough for response to induction therapy to be fully evaluated. This observation suggests that it might be safe to undertake larger, randomized studies, perhaps using earlier administration of GM-CSF, to definitively determine the role of GM-CSF added to chemotherapy in patients with newly diagnosed AML.


Blood ◽  
2002 ◽  
Vol 100 (3) ◽  
pp. 998-1007 ◽  
Author(s):  
Beatrice U. Mueller ◽  
Thomas Pabst ◽  
Motomi Osato ◽  
Norio Asou ◽  
Lisa M. Johansen ◽  
...  

Abstract The transcription factor PU.1 is required for normal blood cell development. PU.1 regulates the expression of a number of crucial myeloid genes, such as the macrophage colony-stimulating factor (M-CSF) receptor, the granulocyte colony-stimulating factor (G-CSF) receptor, and the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor. Myeloid cells derived from PU.1−/− mice are blocked at the earliest stage of myeloid differentiation, similar to the blast cells that are the hallmark of human acute myeloid leukemia (AML). These facts led us to hypothesize that molecular abnormalities involving the PU.1 gene could contribute to the development of AML. We identified 10 mutant alleles of the PU.1 gene in 9 of 126 AML patients. The PU.1 mutations comprised 5 deletions affecting the DNA-binding domain, and 5 point mutations in 1) the DNA-binding domain (2 patients), 2) the PEST domain (2 patients), and 3) the transactivation domain (one patient). DNA binding to and transactivation of the M-CSF receptor promoter, a direct PU.1 target gene, were deficient in the 7 PU.1 mutants that affected the DNA-binding domain. In addition, these mutations decreased the ability of PU.1 to synergize with PU.1-interacting proteins such as AML1 or c-Jun in the activation of PU.1 target genes. This is the first report of mutations in the PU.1 gene in human neoplasia and suggests that disruption of PU.1 function contributes to the block in differentiation found in AML patients.


Blood ◽  
2009 ◽  
Vol 114 (9) ◽  
pp. 1736-1745 ◽  
Author(s):  
Ivan M. Borrello ◽  
Hyam I. Levitsky ◽  
Wendy Stock ◽  
Dorie Sher ◽  
Lu Qin ◽  
...  

AbstractPreclinical models have demonstrated the efficacy of granulocyte-macrophage colony-stimulating factor-secreting cancer immunotherapies (GVAX platform) accompanied by immunotherapy-primed lymphocytes after autologous stem cell transplantation in hematologic malignancies. We conducted a phase 2 study of this combination in adult patients with acute myeloid leukemia. Immunotherapy consisted of autologous leukemia cells admixed with granulocyte-macrophage colony-stimulating factor-secreting K562 cells. “Primed” lymphocytes were collected after a single pretransplantation dose of immunotherapy and reinfused with the stem cell graft. Fifty-four subjects were enrolled; 46 (85%) achieved a complete remission, and 28 (52%) received the pretransplantation immunotherapy. For all patients who achieved complete remission, the 3-year relapse-free survival (RFS) rate was 47.4% and overall survival was 57.4%. For the 28 immunotherapy-treated patients, the RFS and overall survival rates were 61.8% and 73.4%, respectively. Posttreatment induction of delayed-type hypersensitivity reactions to autologous leukemia cells was associated with longer 3-year RFS rate (100% vs 48%). Minimal residual disease was monitored by quantitative analysis of Wilms tumor-1 (WT1), a leukemia-associated gene. A decrease in WT1 transcripts in blood was noted in 69% of patients after the first immunotherapy dose and was also associated with longer 3-year RFS (61% vs 0%). In conclusion, immunotherapy in combination with primed lymphocytes and autologous stem cell transplantation shows encouraging signals of potential activity in acute myeloid leukemia (ClinicalTrials.gov: NCT00116467).


Blood ◽  
1991 ◽  
Vol 78 (5) ◽  
pp. 1190-1197
Author(s):  
T Buchner ◽  
W Hiddemann ◽  
M Koenigsmann ◽  
M Zuhlsdorf ◽  
B Wormann ◽  
...  

To reduce critical neutropenia after chemotherapy (CT) for acute myeloid leukemia (AML) we administered recombinant human granulocyte- macrophage colony-stimulating factor (GM-CSF) to patients over the age of 65 years with newly diagnosed AML and to patients with early or second relapse. CT was 9-day 6-thioguanine, ara-C, and daunorubicin (TAD9) in newly diagnosed AML and sequential high-dose ara-C and mitoxantrone (S-HAM) for relapse. In patients whose bone marrow was free from blasts a continuous intravenous infusion of GM-CSF 250 micrograms/m2/d started on day 4 after CT. Thirty-six patients entered the study and 30 of them did receive GM-CSF. For comparison, a historical control group of 56 patients was used. Complete remission rate was 50% (18 of 36) versus 32% in controls (P = .09), and early death rate was 14% versus 39% (P = .009). Treatment with GM-CSF was not associated with major adverse events. Two patients showed a marked leukemic regrowth that was completely reversible in one patient and appeared to be GM-CSF independent in the other patient. Remission duration does not seem to be reduced after GM-CSF. Under GM-CSF the blood neutrophils recovered 6 and 9 days earlier in the TAD9 (P = .009) and S-HAM (P = .043) groups associated with a rapid clearance of infections in most patients. We conclude that GM-CSF was of therapeutic benefit to our patients and this provides a basis for larger controlled trials.


Sign in / Sign up

Export Citation Format

Share Document