Relation between source rock properties and wireline log parameters: An example from Lower Jurassic Posidonia Shale, NW-Germany

1986 ◽  
Vol 10 (4-6) ◽  
pp. 1105-1112 ◽  
Author(s):  
U. Mann ◽  
D. Leythaeuser ◽  
P.J. Müller
Author(s):  
F. Oner ◽  
S. N. Ganz ◽  
W. Kalkreuth ◽  
M. J. Pearson ◽  
H. Wehner

2019 ◽  
Vol 7 (2) ◽  
pp. T477-T497 ◽  
Author(s):  
Jørgen André Hansen ◽  
Nazmul Haque Mondol ◽  
Manzar Fawad

We have investigated the effects of organic content and maturation on the elastic properties of source rock shales, mainly through integration of a well-log database from the Central North Sea and associated geochemical data. Our aim is to improve the understanding of how seismic properties change in source rock shales due to geologic variations and how these might manifest on seismic data in deeper, undrilled parts of basins in the area. The Tau and Draupne Formations (Kimmeridge shale equivalents) in immature to early mature stages exhibit variation mainly related to compaction and total organic carbon (TOC) content. We assess the link between depth, acoustic impedance (AI), and TOC in this setting, and we express it as an empirical relation for TOC prediction. In addition, where S-wave information is available, we combine two seismic properties and infer rock-physics trends for semiquantitative prediction of TOC from [Formula: see text] and AI. Furthermore, data from one reference well penetrating mature source rock in the southern Viking Graben indicate that a notable hydrocarbon effect can be observed as an addition to the inherently low kerogen-related velocity and density. Published Kimmeridge shale ultrasonic measurements from 3.85 to 4.02 km depth closely coincide with well-log measurements in the mature shale, indicating that upscaled log data are reasonably capturing variations in the actual rock properties. Amplitude variation with offset inversion attributes should in theory be interpreted successively in terms of compaction, TOC, and maturation with associated generation of hydrocarbons. Our compaction-consistent decomposition of these effects can be of aid in such interpretations.


2012 ◽  
Vol 86 (1) ◽  
pp. 105-115 ◽  
Author(s):  
Erin E. Maxwell

Ichthyosaurs represent one of the most highly specialized lineages of marine reptiles, but our understanding of the evolution of this group is based on specimens found at a surprisingly small number of stratigraphic intervals and localities. The Lower Jurassic (Toarcian) Posidonia Shale of southwestern Germany is one of the richest ichthyosaur-bearing formations in the world and has produced thousands of skeletons, including specimens with preserved soft tissue, and fetal remains inside the body cavity. The most abundant ichthyosaur genus in the Posidonia Shale isStenopterygius. In spite of almost 200 years of research effort, the number of species in this genus is still a point of active disagreement in the literature. Here, bivariate and multivariate analyses are used to classify both articulated and disarticulated skeletons to the level of species, using measurement data from individual cranial and postcranial elements. Unlike previous classification attempts, this technique pinpoints ontogenetically conserved differences in size and proportion between the species, and so can be applied to adult, subadult, and neonatal specimens. Using this method, three species ofStenopterygius, S. quadriscissus, S. triscissus, andS. uniterare differentiated.


2005 ◽  
Vol 28 (1) ◽  
pp. 19-38 ◽  
Author(s):  
H. I. Petersen ◽  
Vu Tru ◽  
L. H. Nielsen ◽  
Nguyen A. Duc ◽  
H. P. Nytoft

1988 ◽  
Vol 9 ◽  
pp. 1-105
Author(s):  
Birthe J Schmidt

The source rock potential of Mesozoic sediments (cuttings) from the Hyllebjerg 1 well, Danish Subbasin, has been assessed using a number of different petrographical and organochemical methods. Upper Jurassic sediments (Bream Formation) equivalent to the principal source rocks of the North Sea graben structures (Kimmeridge Clay Formation and lateral equivalents) do not show similar prominent source rock characteristics in this well, although a higher proportion of algal material is observed. Sediments with the most promising source rock characteristics for liquid hydrocarbons were· detected mainly in the lower- Jurassic sequences of the upper Fjerritslev Format ion (F-4 and upper F-3 Member) and in one horizon in the Upper Cretaceous Vedsted Formation which showed a good quality composition and a relatively high content of organic matter. But these sediments may be excluded as actual source rocks in this well as maturity (assuming the threshold value near 0. 60 % R ) is first reached at approximately 8500' 0 depth i.e. at the top of the Gassum Formation (Upper Triassic/ Lower Jurassic). The conditions may only by slightly different off - structure is this area, as the F-4 and F-3 Member sequence according to seismic sections is found at approximately the same depth. But the depth to ( and the thickness of) the Fjerritslev Formation is increasing towards the SE into the rimsynclines of the saltdomes nearby. While sufficient maturity is reached in the deeper part of the well, no commercial accumulations of hydrocarbons were encountered. This is attributed to the mainly reworked, unfavourable type of organic matter and the generally decreasing organic content downwards in the well, approaching the lower 1 imi t for potential source rocks ( set at O, 5% TOC). However, generation and migration of small amounts of gaseous hydrocarbons from Gassum Formation sediments containing more humic-influenced organic matter with only minor reworking cannot generally be excluded either here or elsewhere in the basin. Some more attention should also be paid to the Vinding Formation sediments which contain some algae- ri eh ( Botryocous-type) oil-prone horizons of more favourable source rock conditions. Mature sediments are found at shallower depths ( 8500 ') in this well in the central part of the basin compared to the more marginal areas (8900') where a slightly higher geothermal gradient in Jiyllebjerg 1 ( 28°C/km uncorrected) is seen compared with the marginal areas (23.5°C/km uncorrected) away from the basinal depocenter. The basinal depocenter also has a higher heat flow.


Sign in / Sign up

Export Citation Format

Share Document