5554350 Air pollution control and heat recovery system and process for coal fired power plant

1997 ◽  
Vol 23 (4) ◽  
pp. XI
2021 ◽  
Vol 234 ◽  
pp. 113947
Author(s):  
Alexandre Persuhn Morawski ◽  
Leonardo Rodrigues de Araújo ◽  
Manuel Salazar Schiaffino ◽  
Renan Cristofori de Oliveira ◽  
André Chun ◽  
...  

2018 ◽  
Vol 33 (1) ◽  
pp. 248-256 ◽  
Author(s):  
Jiawei Wang ◽  
Yongsheng Zhang ◽  
Zhao Liu ◽  
Yongzheng Gu ◽  
Pauline Norris ◽  
...  

2014 ◽  
Vol 1070-1072 ◽  
pp. 343-346
Author(s):  
Zeng Hong Xiao ◽  
Xing Lu Hua

As wind power integration is scaled up year by year, the problem of abandoned wind electricity has become increasingly severe, and thus caused serious waste of energy. To solve the problem of abandoned wind electricity, this paper tries to heat power plant’s back water in electric boiler to absorb abandoned wind electricity. Taking a thermal power plant for example, the application of electric boiler in backwater system can bring great economic benefits and environmental benefits, and provide a reasonable way and solution for the use of abandoned wind electricity.


2016 ◽  
Vol 20 (1) ◽  
pp. 303-314
Author(s):  
Changchun Xu ◽  
Min Xu ◽  
Ming Zhao ◽  
Junyu Liang ◽  
Juncong Sai ◽  
...  

In a utility boiler, the most heat loss is from the exhaust flue gas. In order to reduce the exhaust flue gas temperature and further boost the plant efficiency, an improved indirect flue gas heat recovery system and an additional economizer system are proposed. The waste heat of flue gas is used for high-pressure condensate regeneration heating. This reduces high pressure steam extraction from steam turbine and more power is generated. The waste heat recovery of flue gas decreases coal consumption. Other approaches for heat recovery of flue gas, direct utilization of flue gas energy and indirect flue gas heat recovery system, are also considered in this work. The proposed systems coupled with a reference 330MWe power plant are simulated using equivalent enthalpy drop method. The results show that the additional economizer scheme has the best performance. When the exhaust flue gas temperature decreases from 153? to 123?, power output increases by 6.37MWe and increment in plant efficiency is about 1.89%. For the improved indirect flue gas heat recovery system, power output increases by 5.68MWe and the increment in plant efficiency is 1.69%.


Sign in / Sign up

Export Citation Format

Share Document