RANTES production by human proximal tubular epithelial cells (PTEC) in vitro

1997 ◽  
Vol 56 (1-3) ◽  
pp. 415
Author(s):  
J Deckers
1997 ◽  
Vol 56 ◽  
pp. 415
Author(s):  
J.G.M. Deckers ◽  
S.W. van Der Kooij ◽  
F.J. van Der Woude ◽  
M.R. Daha

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1413
Author(s):  
Tjessa Bondue ◽  
Fanny O. Arcolino ◽  
Koenraad R. P. Veys ◽  
Oyindamola C. Adebayo ◽  
Elena Levtchenko ◽  
...  

Epithelial cells exfoliated in human urine can include cells anywhere from the urinary tract and kidneys; however, podocytes and proximal tubular epithelial cells (PTECs) are by far the most relevant cell types for the study of genetic kidney diseases. When maintained in vitro, they have been proven extremely valuable for discovering disease mechanisms and for the development of new therapies. Furthermore, cultured patient cells can individually represent their human sources and their specific variants for personalized medicine studies, which are recently gaining much interest. In this review, we summarize the methodology for establishing human podocyte and PTEC cell lines from urine and highlight their importance as kidney disease cell models. We explore the well-established and recent techniques of cell isolation, quantification, immortalization and characterization, and we describe their current and future applications.


2020 ◽  
Vol 21 (2) ◽  
pp. 391 ◽  
Author(s):  
Patrick C. Baer ◽  
Benjamin Koch ◽  
Janina Freitag ◽  
Ralf Schubert ◽  
Helmut Geiger

Gliflozins are inhibitors of the renal proximal tubular sodium-glucose co-transporter-2 (SGLT-2), that inhibit reabsorption of urinary glucose and they are able to reduce hyperglycemia in patients with type 2 diabetes. A renoprotective function of gliflozins has been proven in diabetic nephropathy, but harmful side effects on the kidney have also been described. In the current project, primary highly purified human renal proximal tubular epithelial cells (PTCs) have been shown to express functional SGLT-2, and were used as an in vitro model to study possible cellular damage induced by two therapeutically used gliflozins: empagliflozin and dapagliflozin. Cell viability, proliferation, and cytotoxicity assays revealed that neither empagliflozin nor dapagliflozin induce effects in PTCs cultured in a hyperglycemic environment, or in co-medication with ramipril or hydro-chloro-thiazide. Oxidative stress was significantly lowered by dapagliflozin but not by empagliflozin. No effect of either inhibitor could be detected on mRNA and protein expression of the pro-inflammatory cytokine interleukin-6 and the renal injury markers KIM-1 and NGAL. In conclusion, empa- and dapagliflozin in therapeutic concentrations were shown to induce no direct cell injury in cultured primary renal PTCs in hyperglycemic conditions.


2020 ◽  
Vol 318 (6) ◽  
pp. F1500-F1512
Author(s):  
Jing Gong ◽  
Sanjeev Noel ◽  
Joshua Hsu ◽  
Errol L. Bush ◽  
Lois J. Arend ◽  
...  

Acute kidney injury (AKI) due to cisplatin is a significant problem that limits its use as an effective chemotherapeutic agent. T cell receptor+CD4−CD8− double negative (DN) T cells constitute the major T cell population in the human and mouse kidney, express programmed cell death protein (PD)-1, and protect from ischemic AKI. However, the pathophysiological roles of DN T cells in cisplatin-induced AKI is unknown. In this study, wild-type mice were treated with cisplatin (30 mg/kg) or vehicle, and the effects on kidney DN T cell numbers and function were measured. In vitro experiments evaluated effects of kidney DN T cells on cisplatin-induced apoptosis and PD ligand 1 (PD-L1) in renal epithelial cells. Adoptive transfer experiments assessed the therapeutic potential of DN T cells during cisplatin-induced AKI. Our results show that kidney DN T cell population increased at 24 h and declined by 72 h after cisplatin treatment. Cisplatin treatment increased kidney DN T cell proliferation, apoptosis, CD69, and IL-10 expression, whereas CD62L, CD44, IL-17A, interferon-γ, and TNF-α were downregulated. Cisplatin treatment decreased both PD-1 and natural killer 1.1 subsets of kidney DN T cells with a pronounced effect on the PD-1 subset. In vitro kidney DN T cell coculture decreased cisplatin-induced apoptosis in kidney proximal tubular epithelial cells, increased Bcl-2, and decreased cleaved caspase 3 expression. Cisplatin-induced expression of PD ligand 1 was reduced in proximal tubular epithelial cells cocultured with DN T cells. Adoptive transfer of DN T cells attenuated kidney dysfunction and structural damage from cisplatin-induced AKI. These results demonstrate that kidney DN T cells respond rapidly and play a protective role during cisplatin-induced AKI.


1996 ◽  
Vol 103 (2) ◽  
pp. 289-294 ◽  
Author(s):  
J. S. J. GERRITSMA ◽  
P. S. HIEMSTRA ◽  
A. F. GERRITSEN ◽  
W. PRODJOSUDJADI ◽  
C. L. VERWEIJ ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document