Letter on “Comments made Mulligan and Chen ‘Can stationary bottom split-beam hydroacoustics be used to measure fish swimming speed in situ?”’

2000 ◽  
Vol 49 (1) ◽  
pp. 97
Author(s):  
F Arrhenius ◽  
M Cardinale
Keyword(s):  
1992 ◽  
Vol 49 (3) ◽  
pp. 523-531 ◽  
Author(s):  
Daniel Boisclair

I evaluated the precision and accuracy of the stereocinematographic (SCG) method for estimating fish swimming speed. The SCG method implements the differences in images recorded by two cameras to determine the position of a target in an x, y, z, coordinate system. Movements and speeds were determined using variations in the position of the targets over time. Movements of rulers [Formula: see text] estimated in the laboratory did not differ significantly from measured values. The accuracy of the SCG method in the field was assessed by comparing simultaneous estimates of the speed of the head and of the tail of individual fish observed in in situ enclosures. Differences between these descriptors of fish swimming were always < 2 body lengths (bl)∙s−1 and, on average, did not differ significantly from 0. Swimming speeds [Formula: see text] ranged from 0.6 to 20.7 cm∙s−1 (0.1–3.8 bl∙s−1). Speed variations between two consecutive 1-s intervals ranged from −23.9 cm∙s−1 (deceleration) to 23.6 cm∙s−1 (acceleration). Positioning fish at 1- to 6-s intervals tended to decrease the variance of swimming speed estimates. A sample size of 100–150 speeds per hour was sufficient to accurately describe fish swimming in an in situ enclosure.


2000 ◽  
Vol 45 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Fredrik Arrhenius ◽  
Bastiaan J.A.M. Benneheij ◽  
Lars G. Rudstam ◽  
Daniel Boisclair
Keyword(s):  

1993 ◽  
Vol 178 (1) ◽  
pp. 97-108 ◽  
Author(s):  
P. W. Webb

Kinematics and steady swimming performance were recorded for steelhead trout (approximately 12.2 cm in total length) swimming in channels 4.5, 3 and 1.6 cm wide in the centre of a flume 15 cm wide. Channel walls were solid or porous. Tail-beat depth and the length of the propulsive wave were not affected by spacing of either solid or porous walls. The product of tail-beat frequency, F, and amplitude, H, was related to swimming speed, u, and to harmonic mean distance of the tail from the wall, z. For solid walls: FH = 1.01(+/−0.31)u0.67(+/−0.09)z(0.12+/−0.02) and for grid walls: FH = 0.873(+/−0.302)u0.74(+/−0.08)z0.064(+/−0.024), where +/−2 s.e. are shown for regression coefficients. Thus, rates of working were smaller for fish swimming between solid walls, but the reduction due to wall effects decreased with increasing swimming speed. Porous grid walls had less effect on kinematics, except at low swimming speeds. Spacing of solid walls did not affect maximum tail-beat frequency, but maximum tail-beat amplitude decreased with smaller wall widths. Maximum tail-beat amplitude similarly decreased with spacing between grid walls, but maximum tail-beat frequency increased. Walls also reduced maximum swimming speed. Wall effects have not been adequately taken into account in most studies of fish swimming in flumes and fish wheels.


Nature ◽  
1975 ◽  
Vol 255 (5511) ◽  
pp. 725-727 ◽  
Author(s):  
C. S. WARDLE
Keyword(s):  

Biomimetics ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 44 ◽  
Author(s):  
John H. Costello ◽  
Sean P. Colin ◽  
Brad J. Gemmell ◽  
John O. Dabiri

Swimming bell kinematics and hydrodynamic wake structures were documented during multiple pulsation cycles of a Eutonina indicans (Romanes, 1876) medusa swimming in a predominantly linear path. Bell contractions produced pairs of vortex rings with opposite rotational sense. Analyses of the momentum flux in these wake structures demonstrated that vortex dynamics related directly to variations in the medusa swimming speed. Furthermore, a bulk of the momentum flux in the wake was concentrated spatially at the interfaces between oppositely rotating vortices rings. Similar thrust-producing wake structures have been described in models of fish swimming, which posit vortex rings as vehicles for energy transport from locations of body bending to regions where interacting pairs of opposite-sign vortex rings accelerate the flow into linear propulsive jets. These findings support efforts toward soft robotic biomimetic propulsion.


1973 ◽  
Vol 59 (3) ◽  
pp. 697-710 ◽  
Author(s):  
P. W. WEBB

1. The kinematics of pectoral-fin propulsion have been measured for Cymatogaster aggregata, 14·3 cm in length, during an increasing-velocity performance test. Acclimation and test temperature was 15 °C, similar to the fishes' normal environmental temperature for the time of year of the tests. 2. Locomotion was in the labriform mode. Within this mode two pectoral-fin patterns were observed, differing only in the details of fin kinematics. These differences resulted from the length of the propagated wave passed over the fin. At low swimming speeds, up to about 2 L/sec, the wavelength was relatively short, approximately twice the length of the trailing edge of the fin. At higher speeds, a wave of very much longer wavelength was passed over the fin. 3. The pectoral fin-beat cycle was divisible into abduction, adduction and refractory phases. Abduction and adduction phases were of equal duration, and the proportion of time occupied by these phases increased with swimming speed. The duration of the refractory phase decreased with increasing speed. 4. The kinematics indicated that thrust was generated throughout abduction and adduction phases, together with lift forces that cancelled out over a complete cycle. As a result of lift forces and the refractory phase the body moved in a figure-8 motion relative to the flow. 5. Pectoral fin-beat frequency and amplitude increased with swimming speed, and the product of frequencyxamplitude was linearly related to swimming speed. 6. Interactions between pectoral fin-beat frequency, amplitude, refractory phase and kinematic patterns were interpreted as a mechanism to permit the propulsive muscles to operate at optimum efficiency and power output over a wider range of swimming speeds than would otherwise be possible. 7. Pectoral-fin propulsion was augmented by caudal-fin propulsion only at swimming speeds greater than 3·4 L/sec. 8. The mean 45 min critical swimming speed was 3·94 L/sec, and compares favourably with similar levels of activity for fish swimming by means of body and caudal-fin movements.


1998 ◽  
Vol 201 (22) ◽  
pp. 3123-3133 ◽  
Author(s):  
JD Kieffer ◽  
D Alsop ◽  
CM Wood

Instantaneous fuel usage at 5 degreesC or 15 degreesC was assessed by measurement of rates of O2 consumption (O2), CO2 excretion (CO2) and nitrogenous waste excretion (nitrogen =ammonia-N + urea-N) in juvenile rainbow trout (Oncorhynchus mykiss) at rest and during swimming at 45 % and 75 % of aerobic capacity (Ucrit). After 2 weeks of training at approximately 1 body length s-1 (BL s-1), critical swimming speeds (approximately 3.0 BL s-1) and whole-body energy stores (total protein, lipids and carbohydrates) were identical in fish acclimated to 5 degreesC or 15 degreesC. O2 and CO2 increased with swimming speed at both temperatures and were higher at 15 degreesC than at 5 degreesC at all speeds, but the overall Q10 values (1.23-1.48) were low in these long-term (6 weeks) acclimated fish. The respiratory quotient (CO2/O2, approximately 0.85) was independent of both temperature and swimming speed. In contrast to O2 and CO2, the rate of ammonia excretion was independent of swimming speed, but more strongly influenced by temperature (Q10 1. 4-2.8). Urea excretion accounted for 15-20 % of nitrogen, was unaffected by swimming speed and showed a tendency (P&lt;0.07) to be positively influenced by temperature at one speed only (45 % Ucrit). Nitrogen quotients (NQ nitrogen/O2) were generally higher in warm-acclimated fish, remaining independent of swimming speed at 15 degreesC (0.08), but decreased from about 0.08 at rest to 0.04 during swimming at 5 degreesC. Instantaneous aerobic fuel use calculations based on standard respirometric theory showed that both acclimation temperature and swimming speed markedly influenced the relative and absolute use of carbohydrates, lipids and proteins by trout. At rest, cold-acclimated trout used similar proportions of carbohydrates and lipids and only 27 % protein. During swimming, protein use decreased to 15 % at both speeds while the relative contributions of both lipid and carbohydrate increased (to more than 40 %). On an absolute basis, carbohydrate was the most important fuel for fish swimming at 5 degreesC. In contrast, resting fish acclimated to 15 degreesC utilized 55 % lipid, 30 % protein and only 15 % carbohydrate. However, as swimming speed increased, the relative contribution of carbohydrate increased to 25 %, while the protein contribution remained unchanged at approximately 30 %, and lipid use decreased slightly (to 45 %). On an absolute basis, lipid remained the most important fuel in fish swimming at 15 degreesC. These results support the concept that lipids are a major fuel of aerobic exercise in fish, but demonstrate that the contribution of protein oxidation is much smaller than commonly believed, while that of carbohydrate oxidation is much larger, especially at higher swimming speeds and colder temperature.


Sign in / Sign up

Export Citation Format

Share Document