Removal of hydrogen sulfide by catalytic oxidation over activated carbon: influence of operating parameters on efficiency of a bench-scale tubular reactor

Author(s):  
L. Lin ◽  
N. Boutakhamt ◽  
P. Le Cloirec
1998 ◽  
Vol 173 (2) ◽  
pp. 185-192 ◽  
Author(s):  
Alessandra Primavera ◽  
Alessandro Trovarelli ◽  
Paolo Andreussi ◽  
Giuliano Dolcetti

2018 ◽  
Vol 280 ◽  
pp. 315-322
Author(s):  
N. Mohammad Nor ◽  
L. L. Chung ◽  
Bassim H. Hameed ◽  
S. Sethupathi ◽  
A. R. Mohamed

This research work is focuses on understanding the characteristics of modified nitrogen-enriched palm shell activated carbon (N-PSAC) that undergo different microwave (MW) operating parameters towards efficient H2S removal. The nitrogen functional groups were tailored onto PSAC micropore structures through impregnation of urea onto palm shell activated carbon (PSAC). The effect of MW heating variables (heating temperature, N2 flow rate, heating time and amount of adsorbent) on N-PSAC adsorbent was investigated and analyzed with respect to H2S adsorption capacity.One factor at a time (OFAT) approach was used to produce an efficient N-PSAC adsorbent, where theH2S breakthrough capacity (measured at 5% of H2S outlet concentration) attained was in the range of 98.71 – 211.35 mg/g.It was found that MW heating variables contribute a significant impactto the modification of N-PSAC adsorbent in catering the H2S emission.


2012 ◽  
Vol 610-613 ◽  
pp. 2000-2005
Author(s):  
Chun Yan Xu ◽  
Hong Jun Han

The uncertainty of operating parameters hinders the practical application of the biological desulfurization. To solve this problem, this study which was conducted in room temperature, pH around seven conditions, investigated the effects of the operating parameters on the hydrogen sulfide (H2S) removal performance in the biotrickling filter, including inlet H2S concentration, inlet flow rate or gas retention time, inlet volume load and circulating liquid spraying flux. The results showed that, the inlet H2S concentration should be controlled within 800mg/m3, 650mg/m3, 400mg/m3, 300mg/m3 respectively while the inlet flow rate was 150L/h, 200L/h, 250L/h, 300L/h, at those conditions, the outlet H2S concentrations were lower than 8mg/m3 and the H2S removal efficiencies were more than 98%. The optimum gas retention time was 12.37s, corresponding to the inlet flow rate of 200L/h, at this time, even if the inlet H2S concentration as high as 700mg/m3, the removal efficiency could be still more than 98%, the outlet concentration of H2S was only 13.1mg/m3. The maximum inlet volume load was 130g/(m3•h), in this condition, the outlet concentration of H2S could be controlled below 12mg/m3, the removal efficiency could above 98.4%.


2007 ◽  
Vol 46 (25) ◽  
pp. 8388-8396 ◽  
Author(s):  
Carmen Creanga Manole ◽  
Carine Julcour-Lebigue ◽  
Anne-Marie Wilhelm ◽  
Henri Delmas

Sign in / Sign up

Export Citation Format

Share Document