Stationary Heat Transport by Plane Groundwater Movement in A Thin or A Thick Layer

Author(s):  
A. Verruijt
Author(s):  
M.D. Bentzon ◽  
J. v. Wonterghem ◽  
A. Thölén

We report on the oxidation of a magnetic fluid. The oxidation results in magnetic super lattice crystals. The “atoms” are hematite (α-Fe2O3) particles with a diameter ø = 6.9 nm and they are covered with a 1-2 nm thick layer of surfactant molecules.Magnetic fluids are homogeneous suspensions of small magnetic particles in a carrier liquid. To prevent agglomeration, the particles are coated with surfactant molecules. The magnetic fluid studied in this work was produced by thermal decomposition of Fe(CO)5 in Declin (carrier liquid) in the presence of oleic acid (surfactant). The magnetic particles consist of an amorphous iron-carbon alloy. For TEM investigation a droplet of the fluid was added to benzine and a carbon film on a copper net was immersed. When exposed to air the sample starts burning. The oxidation and electron irradiation transform the magnetic particles into hematite (α-Fe2O3) particles with a median diameter ø = 6.9 nm.


Author(s):  
G.Y. Fan ◽  
Bruce Mrosko ◽  
Mark H. Ellisman

A lens coupled CCD camera showing single electron sensitivity has been built for TEM applications. The design is illustrated in Fig. 1. The bottom flange of a JEM-4000EX microscope is replaced by a special flange which carries a large rectangular leaded glass window, 22 mm thick. A 20 μm thick layer of red phosphor is coated on the window, and the entire window is sputter-coated with a thin layer of Au/Pt. A two-lens relay system is used to provide efficient coupling between the image on the phosphor scintillator and the CCD imager. An f1.0 lens (Goerz optical) with front focal length 71.6 mm is used as the collector. A mirror prism, of the Amici type, is used to "bend" the optical path by 90° to prevent X-rays which may penetrate the leaded glass from hitting the CCD detector. Images may be relayed directly to the camera (1:1) or demagnified by a factor of up to 3:1 by moving the lens assembly.


Author(s):  
Randy Moore

Previous work has indicated that the graft incompatihility between Sedrmi telephoides and Solanum pennellil involves cell necrosis that results In a thick layer of collapsed cells at the graft Interface. This necrotic layer insulates the stock from the scion, which results in abscission of the Sedum scion after 4-6 weeks due to desiccation and starvation. Thus, cell autolysis (which is restricted to Sedum) characterizes the Incompatibility response in this system (1). In order to elucidate the events that lead to cell autolysis, and thus better understand the cellular site and mode of action of cellular incompatibility, the appearance and fate of the hydrolytlc enzyme acid phosphatase (AP) was followed in both the compatible Sedum autograft and the incompatible Sedum/Solanum heterograft. Acid phosphatase was localized by a modified Gomori-type reaction; positive (i.e., including NaF inhibitor) and negative (lacking substrate) controls showed no enzymatic precipitate. Following an initial association with the endoplasmic reticulum (ER) and dictyosomes at 6-10 hours after grafting, AP activity in the compatible Sedum autograft is associated primarily with the plasmalemma (Fig. 1). By 18-24 hours after grafting, the AP activity is restricted to the tono-plast and vacuole (Fig. 2). This strict compartmentation and absence of enzyme from the cytosol is maintained throughout the development of the compatible graft. While AP activity in the incompatible Sedum/Solanum heterograft is Initially similar to the compatible Sedum autograft (i.e., initially found on the ER and dictyosomes), there is a marked difference in enzyme localization in the two graft partners as the incompatibility response develops. As in the compatible autograft, Solanum cells at the graft interface show an Increase in AP activity that Is restricted to the vacuole and tonoplast, with little or no enzyme activity in the cytosol (Fig. 3). In comparable Sedum cells, however, there is a dramatic Increase In AP activity in the cytosol (Fig. h); this cytosollc AP activity is associated with thin fibril-like structures (Fig. 5) measuring approximately 60 A in diameter. This high cytoplasmic AP activity In Sedum cells results in cell autolysis, death, and eventual cell collapse to form the characteristic necrotic layer separating the two graft partners.


2002 ◽  
Vol 12 (3) ◽  
pp. 201-206 ◽  
Author(s):  
Janina Marciak-Kozłowska ◽  
Mirosław Kozłowski
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document