OP-094 TRIAGE OF ACUTE DECOMPENSATED CONGESTIVE HEART FAILURE IN THE EMERGENCY DEPARTMENT: INITIAL RESULTS USING A COMPUTER-BASED MEDICAL DECISION-SUPPORT TOOL

2010 ◽  
Vol 140 ◽  
pp. S27
Author(s):  
Hisham M.F. Sherif ◽  
Sharmila S. Johnson ◽  
Debora J. Simmons
2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S31-S31
Author(s):  
Sena Veazey ◽  
Maria SerioMelvin ◽  
David E Luellen ◽  
Angela Samosorn ◽  
Alexandria Helms ◽  
...  

Abstract Introduction In disaster or mass casualty situations, access to remote burn care experts, communication, or resources may be limited. Furthermore, burn injuries are complex and require substantial training and knowledge beyond basic clinical care. Development and use of decision support (DS) technologies may provide a solution for addressing this need. Devices capable of delivering burn management recommendations can enhance the provider’s ability to make decisions and perform interventions in complex care settings. When coupled with merging augmented reality (AR) technologies these tools may provide additional capabilities to enhance medical decision-making, visualization, and workflow when managing burns. For this project, we developed a novel AR-based application with enhanced integrated clinical practice guidelines (CPGs) to manage large burn injuries for use in different environments, such as disasters. Methods We identified an AR system that met our requirements to include portability, infrared camera, gesture and voice control, hands-free control, head-mounted display, and customized application development abilities. Our goal was to adapt burn CPGs to make use of AR concepts as part of an AR-enabled burn clinical decision support system supporting four sub-applications to assist users with specific interventional tasks relevant to burn care. We integrated relevant CPGs and a media library with photos and videos as additional references. Results We successfully developed a clinical decision support tool that integrates burn CPGs with enhanced capabilities utilizing AR technology. The main interface allows input of patient demographics and injuries with step-by-step guidelines that follow typical burn management care and workflow. There are four sub-applications to assist with these tasks, which include: 1) semi-automated burn wound mapping to calculate total body surface area; 2) hourly burn fluid titration and recommendations for resuscitation; 3) medication calculator for accurate dosing in preparation for procedures and 4) escharotomy instructor with holographic overlays. Conclusions We developed a novel AR-based clinical decision support tool for management of burn injuries. Development included adaptation of CPGs into a format to guide the user through burn management using AR concepts. The application will be tested in a prospective research study to determine the effectiveness, timeliness, and performance of subjects using this AR-software compared to standard of care. We fully expect that the tool will reduce cognitive workload and errors, ensuring safety and proper adherence to guidelines.


2012 ◽  
Vol 4 (2) ◽  
pp. 227-231 ◽  
Author(s):  
Mitchell J. Feldman ◽  
Edward P. Hoffer ◽  
G. Octo Barnett ◽  
Richard J. Kim ◽  
Kathleen T. Famiglietti ◽  
...  

Abstract Background Computer-based medical diagnostic decision support systems have been used for decades, initially as stand-alone applications. More recent versions have been tested for their effectiveness in enhancing the diagnostic ability of clinicians. Objective To determine if viewing a rank-ordered list of diagnostic possibilities from a medical diagnostic decision support system improves residents' differential diagnoses or management plans. Method Twenty first-year internal medicine residents at Massachusetts General Hospital viewed 3 deidentified case descriptions of real patients. All residents completed a web-based questionnaire, entering the differential diagnosis and management plan before and after seeing the diagnostic decision support system's suggested list of diseases. In all 3 exercises, the actual case diagnosis was first on the system's list. Each resident served as his or her own control (pretest/posttest). Results For all 3 cases, a substantial percentage of residents changed their primary considered diagnosis after reviewing the system's suggested diagnoses, and a number of residents who had not initially listed a “further action” (laboratory test, imaging study, or referral) added or changed their management options after using the system. Many residents (20% to 65% depending on the case) improved their differential diagnosis from before to after viewing the system's suggestions. The average time to complete all 3 cases was 15.4 minutes. Most residents thought that viewing the medical diagnostic decision support system's list of suggestions was helpful. Conclusion Viewing a rank-ordered list of diagnostic possibilities from a diagnostic decision support tool had a significant beneficial effect on the quality of first-year medicine residents' differential diagnoses and management plans.


Sign in / Sign up

Export Citation Format

Share Document