2021 ◽  
pp. 91-97
Author(s):  
V. V. Suskin ◽  
A. V. Rastorguev ◽  
I. V. Kapyrin

This article discusses a three-dimensional groundwater flow model of a deep disposal facility at Severny test site. The three-dimensional model is a part of the certified software GEOPOLIS, based on the hydrogeological code GeRa (Geomigration of Radionuclides) serving as the calculation engine. This study describes the hydrogeological patterning of the groundwater flow model, as well as the results of calibration and verification of the model water heads with respect to the data of monitoring for more than 40 years of the deep repository exploitation. The article begins with a brief overview of the previously developed hydrogeological models of this object and continues with a description of the geological structure of the territory, and with a substantiation of the boundaries and parameters of the model. The results of groundwater flow modeling, model calibration, verification and estimation of discrepancy between the model results and monitoring data are shown. The comparison of the modeled and observed water heads in the stationary conditions (before the start of injection) and during operation of the deep repository allows making conclusion on the quality of calibration.


Author(s):  
J. Waslo ◽  
T. Hasegawa ◽  
M. B. Hilt

This paper describes the application of a unique three-dimensional water flow modeling technique to the study of complex fluid flow patterns within an advanced gas turbine combustor. The visualization technique uses light scattering, coupled with realtime image processing, to determine flow fields. Additional image processing is used to make concentration measurements within the combustor.


2020 ◽  
Vol 9 (3) ◽  
pp. 156
Author(s):  
Xuequan Zhang ◽  
Jin Liu ◽  
Zihe Hu ◽  
Ming Zhong

The flow in meandering rivers is characterized by rapid changes in flow velocity and water level, especially in flooded environments. Accurate cross-sectional observation data enable continuous monitoring of flow conditions, which is important for river navigation. In this paper, cross-sectional data based flow modeling and rendering methods are studied to build an interactive hybrid flow environment for three-dimensional river shipping. First, the sparse cross-sectional data are extrapolated and interpolated to provide dense sampling points. Then, the data are visualized separately by dynamic texture mapping, particle tracking, streamline rendering, and contour surface rendering. Finally, the rendering models are integrated with ship animation to build a comprehensive hybrid river navigation scenario. The proposed methods are tested by visualizing measured cross-sectional data in the Yangtze River using an open-source software, called World Wind. The experimental results demonstrate that the hybrid flow rendering achieves comprehensive visual effect and the rendering frame rate is greater than 30. The interactive hybrid flow visualization is beneficial to support river shipping analysis.


Sign in / Sign up

Export Citation Format

Share Document