Indentation-induced cracking and 90° domain switching pattern in barium titanate ferroelectric single crystals under different poling

2002 ◽  
Vol 57 (1) ◽  
pp. 198-202 ◽  
Author(s):  
F Fang ◽  
W Yang
Author(s):  
V. V. Borodina ◽  
S. O. Kramarov

This review article summarizes the material of years of research on the impact of mechanical stresses on the domain structure of multiaxhetoelectrics using the example of barium titanium monocrystals. Since the discovery of the ferroelectric properties of barium titanate in 1944, this material has been the subject of comprehensive investigation as the first practically important and perhaps the most famous ferroelectric. The domain structure of barium titanate is sensitive to mechanical stresses arising both from simple uniaxial compression and from point impacts by local mechanical loading. Mechanical stress applied to a ferroelectric crystal may have a significant effect on dielectric and piezoelectric properties. In particular, 90-degree domain switching is possible under the influence of stresses. The most interesting experimental results are obtained in the study of elastoplastic processes in BaTiO 3 originating from local mechanical stresses. The following features are found and studied: development of strained region around the point of application of the load; “internal” 90-degree domain that does not extend to the crystal surfaces and does not close upon other domains; the growth of 90-degree domains under the influence of residual mechanical stresses; growth of cracks along charged 90-degree domain walls. The notions of “ferroplastic effect” (crystal deformation due to the formation of 90-degree ferroelectric domains) and “ferromechanical effect” (crack formation and growth along charged 90-degree domain walls) are introduced. The hypothesis of a significant role of oxygen vacancies in the processes of 90-degree domain reorientation was put forward and experimentally confirmed. In particular, an increase in the concentration of oxygen vacancies by reducing annealing of barium titanate single crystals creates more favorable conditions for the appearance of an "internal" 90-degree domain under local mechanical load. The study of the mechanisms governing the formation of a domain structure in ferroelectric crystals remains an important problem of modern materials science.


2016 ◽  
Vol 94 ◽  
pp. 207-229 ◽  
Author(s):  
Hongjun Yu ◽  
Jie Wang ◽  
Takahiro Shimada ◽  
Huaping Wu ◽  
Linzhi Wu ◽  
...  

Author(s):  
Virginia G. DeGiorgi ◽  
E. P. Gorzkowski ◽  
M.-J. Pan ◽  
M. A. Qidwai ◽  
Stephanie A. Wimmer

Application of new materials, such as PMN-PT single crystals, requires a good understanding of basic material performance under both electrical and mechanical loading. Over the past 5 years the authors have used both computational and experimental techniques to examine the relationships between poling direction, crystal orientation, and electric field actuation. Experiments show mixed results indicating that the relationship between material orientation and loading is more complex than originally imagined. In some cases crack initiation and propagation perpendicular to the applied field was observed within a few thousand cycles but in other cases no failure was observed even after a few hundred thousand cycles despite crack growth in the presence of introduced defects. Computational effort quickly identified a gap between development of theoretical constitutive models that addressed domain switching based nonlinear behavior and what was available in workable form as part of commercial finite element codes. This led to the implementation of a macro-mechanical constitutive model which addresses domain switching, into a commercially available finite element code. The rate independent version has been used to investigate issues of electric field actuation and poling direction. Presented here are insights into the fracture and fatigue behavior of piezoelectric single crystals from both experimental and computational studies.


2005 ◽  
Vol 120 (1-3) ◽  
pp. 125-129 ◽  
Author(s):  
S. Ganesamoorthy ◽  
M. Nakamura ◽  
S. Takekawa ◽  
S. Kumaragurubaran ◽  
K. Terabe ◽  
...  

1997 ◽  
Vol 12 (9) ◽  
pp. 2388-2392 ◽  
Author(s):  
C. Miot ◽  
E. Husson ◽  
C. Proust ◽  
R. Erre ◽  
J. P. Coutures

Powder and ceramics of barium titanate prepared by the citric process were studied by x-ray photoelectron spectroscopy (XPS). Spectra of C1s, O1s, Ti2p, Ba3d, and Ba4d levels are analyzed in powder and ceramics immediately after the sintering step and after several months of exposure in the air. Ar-ion etching allowed one to characterize the material intrinsic carbon. The results are discussed in comparison with works previously published on oxide single crystals.


Sign in / Sign up

Export Citation Format

Share Document