3D reconstruction in a constrained camera system

2002 ◽  
Vol 23 (11) ◽  
pp. 1337-1347
Author(s):  
Jin Won Gu ◽  
Joon Hee Han
2017 ◽  
Vol 3 (2) ◽  
pp. 539-542 ◽  
Author(s):  
Christian Marzi ◽  
Andreas Wachter ◽  
Werner Nahm

AbstractFuture fully digital surgical visualization systems enable a wide range of new options. Caused by optomechanical limitations a main disadvantage of today’s surgical microscopes is their incapability of providing arbitrary perspectives to more than two observers. In a fully digital microscopic system, multiple arbitrary views can be generated from a 3D reconstruction. Modern surgical microscopes allow replacing the eyepieces by cameras in order to record stereoscopic videos. A reconstruction from these videos can only contain the amount of detail the recording camera system gathers from the scene. Therefore, covered surfaces can result in a faulty reconstruction for deviating stereoscopic perspectives. By adding cameras recording the object from different angles, additional information of the scene is acquired, allowing to improve the reconstruction. Our approach is to use a fixed four-camera setup as a front-end system to capture enhanced 3D topography of a pseudo-surgical scene. This experimental setup would provide images for the reconstruction algorithms and generation of multiple observing stereo perspectives. The concept of the designed setup is based on the common main objective (CMO) principle of current surgical microscopes. These systems are well established and optically mature. Furthermore, the CMO principle allows a more compact design and a lowered effort in calibration than cameras with separate optics. Behind the CMO four pupils separate the four channels which are recorded by one camera each. The designed system captures an area of approximately 28mm × 28mm with four cameras. Thus, allowing to process images of 6 different stereo perspectives. In order to verify the setup, it is modelled in silico. It can be used in further studies to test algorithms for 3D reconstruction from up to four perspectives and provide information about the impact of additionally recorded perspectives on the enhancement of a reconstruction.


2019 ◽  
Vol 31 (4) ◽  
pp. 603-611 ◽  
Author(s):  
Xiaorui Qiao ◽  
◽  
Atsushi Yamashita ◽  
Hajime Asama

Structure from Motion (SfM), as a three-dimensional (3D) reconstruction technique, can estimate the structure of an object by using a single moving camera. Cameras deployed in underwater environments are generally confined to waterproof housings. Thus, the light rays entering the camera are refracted twice; once at the interface between the water and the camera housing, and again at the interface between the camera housing and air. Images captured from scenes in underwater environments are prone to, and deteriorate, from distortion caused by this refraction. Severe distortions in geometric reconstruction would be caused if the refractive distortion is not properly addressed. Here, we propose a SfM approach to deal with the refraction in a camera system including a refractive surface. The impact of light refraction is precisely modeled in the refractive model. Based on the model, a new calibration and camera pose estimation method is proposed. This proposed method assists in accurate 3D reconstruction using the refractive camera system. Experiments, including simulations and real images, show that the proposed method can achieve accurate reconstruction, and effectively reduce the refractive distortion compared to conventional SfM.


Author(s):  
L. Perfetti ◽  
C. Polari ◽  
F. Fassi

Narrow spaces and passages are not a rare encounter in cultural heritage, the shape and extension of those areas place a serious challenge on any techniques one may choose to survey their 3D geometry. Especially on techniques that make use of stationary instrumentation like terrestrial laser scanning. The ratio between space extension and cross section width of many corridors and staircases can easily lead to distortions/drift of the 3D reconstruction because of the problem of propagation of uncertainty. This paper investigates the use of fisheye photogrammetry to produce the 3D reconstruction of such spaces and presents some tests to contain the degree of freedom of the photogrammetric network, thereby containing the drift of long data set as well. The idea is that of employing a multi-camera system composed of several fisheye cameras and to implement distances and relative orientation constraints, as well as the pre-calibration of the internal parameters for each camera, within the bundle adjustment. For the beginning of this investigation, we used the NCTech iSTAR panoramic camera as a rigid multi-camera system. The case study of the Amedeo Spire of the Milan Cathedral, that encloses a spiral staircase, is the stage for all the tests. Comparisons have been made between the results obtained with the multi-camera configuration, the auto-stitched equirectangular images and a data set obtained with a monocular fisheye configuration using a full frame DSLR. Results show improved accuracy, down to millimetres, using a rigidly constrained multi-camera.


Sign in / Sign up

Export Citation Format

Share Document