Rapid analysis of the expression of heterologous proteins in Escherichia coli using pyrolysis mass spectrometry and Fourier transform infrared spectroscopy with chemometrics: application to α2-interferon production

1999 ◽  
Vol 72 (3) ◽  
pp. 157-168 ◽  
Author(s):  
A McGovern
1998 ◽  
Vol 36 (2) ◽  
pp. 367-374 ◽  
Author(s):  
Éadaoin M. Timmins ◽  
Susan A. Howell ◽  
Bjørn K. Alsberg ◽  
William C. Noble ◽  
Royston Goodacre

Two rapid spectroscopic approaches for whole-organism fingerprinting of pyrolysis-mass spectrometry (PyMS) and Fourier transform-infrared spectroscopy (FT-IR) were used to analyze a group of 29 clinical and reference Candida isolates. These strains had been identified by conventional means as belonging to one of the three species Candida albicans, C. dubliniensis(previously reported as atypical C. albicans), and C. stellatoidea (which is also closely related to C. albicans). To observe the relationships of the 29 isolates as judged by PyMS and FT-IR, the spectral data were clustered by discriminant analysis. On visual inspection of the cluster analyses from both methods, three distinct clusters, which were discrete for each of the Candida species, could be seen. Moreover, these phenetic classifications were found to be very similar to those obtained by genotypic studies which examined the HinfI restriction enzyme digestion patterns of genomic DNA and by use of the 27A C. albicans-specific probe. Both spectroscopic techniques are rapid (typically, 2 min for PyMS and 10 s for FT-IR) and were shown to be capable of successfully discriminating between closely related isolates of C. albicans, C. dubliniensis, and C. stellatoidea. We believe that these whole-organism fingerprinting methods could provide opportunities for automation in clinical microbial laboratories, improving turnaround times and the use of resources.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
E. Zumelzu ◽  
M. J. Wehrhahn ◽  
O. Muñoz ◽  
F. Rull

The persistent adhesion of salmon muscle to food container walls after treatment with urea solution was observed. This work evaluated the diffusion of antibiotics from the salmon muscle to the polyethylene terephthalate (PET) coating protecting the electrolytic chromium coated steel (ECCS) plates. New aquaculture production systems employ antibiotics such as florfenicol, florfenicol amine, oxytetracycline, and erythromycin to control diseases. The introduction of antibiotics is a matter of concern regarding the effects on human health and biodiversity. It is important to determine their impact on the adhesion of postmortem salmon muscle to can walls and the surface and structural changes affecting the functionality of multilayers. This work characterized the changes occurring in the multilayer PET polymer and steel of containers by electron microscopy, 3D atomic force microscopy (3D-AFM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) analyses. A robust mass spectrometry methodology was employed to determine the presence of antibiotic residues. No evidence of antibiotics was observed on the protective coating in the range between 0.001 and 2.0 ng/mL; however, the presence of proteins, cholesterol, and alpha-carotene was detected. This in-depth profiling of the matrix-level elements is relevant for the use of adequate materials in the canning export industry.


Sign in / Sign up

Export Citation Format

Share Document