A vehicle for photodynamic therapy of skin cancer: influence of dimethylsulphoxide on 5-aminolevulinic acid in vitro cutaneous permeation and in vivo protoporphyrin IX accumulation determined by confocal microscopy

2000 ◽  
Vol 65 (3) ◽  
pp. 359-366 ◽  
Author(s):  
Fernanda Scarmato De Rosa ◽  
Juliana Maldonado Marchetti ◽  
José Antônio Thomazini ◽  
Antônio Cláudio Tedesco ◽  
Maria Vitória Lopes Badra Bentley
2021 ◽  
Vol 14 (3) ◽  
pp. 229
Author(s):  
Yo Shinoda ◽  
Daitetsu Kato ◽  
Ryosuke Ando ◽  
Hikaru Endo ◽  
Tsutomu Takahashi ◽  
...  

5-Aminolevulinic acid (5-ALA) is an amino acid derivative and a precursor of protoporphyrin IX (PpIX). The photophysical feature of PpIX is clinically used in photodynamic diagnosis (PDD) and photodynamic therapy (PDT). These clinical applications are potentially based on in vitro cell culture experiments. Thus, conducting a systematic review and meta-analysis of in vitro 5-ALA PDT experiments is meaningful and may provide opportunities to consider future perspectives in this field. We conducted a systematic literature search in PubMed to summarize the in vitro 5-ALA PDT experiments and calculated the effectiveness of 5-ALA PDT for several cancer cell types. In total, 412 articles were identified, and 77 were extracted based on our inclusion criteria. The calculated effectiveness of 5-ALA PDT was statistically analyzed, which revealed a tendency of cancer-classification-dependent sensitivity to 5-ALA PDT, and stomach cancer was significantly more sensitive to 5-ALA PDT compared with cancers of different origins. Based on our analysis, we suggest a standardized in vitro experimental protocol for 5-ALA PDT.


2019 ◽  
Vol 23 (07n08) ◽  
pp. 813-820
Author(s):  
Odrun A. Gederaas ◽  
Harald Husebye ◽  
Anders Johnsson ◽  
Susan Callaghan ◽  
Anders Brunsvik

Aminolevulinic acid and hexyl-aminolevulinate serve as biological precursors to produce photosensitive porphyrins in cells via the heme biosynthetic pathway. This pathway is integral to porphyrin-based photodynamic diagnosis and therapy. By adding exogenous hexyl-aminolevulinate to rat bladder cancer cells (AY27, in vitro) and an animal bladder cancer model (in vivo), fluorescent endogenous porphyrin production was stimulated. Lipophilic protoporphyrin IX was identified as the dominant species by reverse high-pressure liquid chromatography. Subcellular porphyrin localization in the AY27 cells was evaluated by confocal laser scanning microscopy and showed almost quantitative bleaching after 20 s. From this study, we ascertained that the protocol described herein is suitable for hexyl-aminolevulinate-mediated photodynamic therapy and diagnosis when protoporphyrin IX is the active agent.


Sign in / Sign up

Export Citation Format

Share Document