Effects of soil improvement treatments on bacterial community structure and soil processes in an upland grassland soil

2003 ◽  
Vol 46 (1) ◽  
pp. 11-22 ◽  
Author(s):  
Neil D. Gray ◽  
Richard C. Hastings ◽  
Samuel K. Sheppard ◽  
Paul Loughnane ◽  
David Lloyd ◽  
...  
2005 ◽  
Vol 53 (3) ◽  
pp. 329-337 ◽  
Author(s):  
Nabla M. Kennedy ◽  
Deirdre E. Gleeson ◽  
John Connolly ◽  
Nicholas J.W. Clipson

2003 ◽  
Vol 43 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Robert I. Griffiths ◽  
Andrew S. Whiteley ◽  
Anthony G. O'Donnell ◽  
Mark J. Bailey

2021 ◽  
Author(s):  
Xiaoting Wei ◽  
Fuwen Qin ◽  
Bing Han ◽  
Huakun Zhou ◽  
Miao Liu ◽  
...  

Abstract Background and Aims:The outstanding ability of biological soil crusts (BSCs) in soil microenvironments regulation is mainly attribute to microorganisms that colonizing in biocrusts. We aimed to investigate the changes of bacterial community structure and function with biocrust succession, as well as their responses to climatic changes across large geographical scales.Methods: Algal BSCs and lichen BSCs were sampled along an aridity gradient on alpine grasslands. Bacterial communities in biocrusts were measured using high-throughput sequencing, and soil underlying biocrusts (0-5 cm) was collected for nutrients determination. Results: Our results indicated that compared with algal BSCs, bacterial community in lichen BSCs was characterized by lower diversity, more complex co-occurrence network and mutually beneficial relationships. The bacterial community assembly was governed mainly by stochastic processes for lichen BSCs, which was different from the almost equally important roles of stochastic and deterministic processes for algal BSCs. Geographical location had a significant effect on bacterial communities in both algal and lichen BSCs, while had a greater effect on lichen BSCs. It is noteworthy that the bacterial diversity of algal BSCs was positively correlated with aridity index, while that of lichens was negatively correlated with aridity index. Moreover, we determined lower soil pH and higher soil phosphorus content underlying lichen BSCs, implying their advantages in soil improvement. Conclusions: Aridity index was one of important driving factors of bacterial community in biocrusts, and its effects were biocrust type dependent. Lichen BSCs had greater effects on soil improvement than that of algal BSCs.


2014 ◽  
Vol 73 (1) ◽  
pp. 51-67 ◽  
Author(s):  
A Jain ◽  
M Bandekar ◽  
J Gomes ◽  
D Shenoy ◽  
RM Meena ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stephanie E. Hereira-Pacheco ◽  
Yendi E. Navarro-Noya ◽  
Luc Dendooven

AbstractRhizosphere and root endophytic bacteria are crucial for plant development, but the question remains if their composition is similar and how environmental conditions, such as water content, affect their resemblance. Ricinus communis L., a highly drought resistant plant, was used to study how varying soil water content affected the bacterial community in uncultivated, non-rhizosphere and rhizosphere soil, and in its roots. Additionally, the bacterial community structure was determined in the seeds of R. communis at the onset of the experiment. Plants were cultivated in soil at three different watering regimes, i.e. 50% water holding capacity (WHC) or adjusted to 50% WHC every two weeks or every month. Reducing the soil water content strongly reduced plant and root dry biomass and plant development, but had little effect on the bacterial community structure. The bacterial community structure was affected significantly by cultivation of R. communis and showed large variations over time. After 6 months, the root endophytic bacterial community resembled that in the seeds more than in the rhizosphere. It was found that water content had only a limited effect on the bacterial community structure and the different bacterial groups, but R. communis affected the bacterial community profoundly.


Sign in / Sign up

Export Citation Format

Share Document